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= O . . o .
O In the present paper we consider not only the simplest periodic nets (such as arise
—~ from the equivalent circle packings of Niggli, Fejes Téth and others) but also less

regular ones, ignored by mathematicians but nevertheless of widespread occurrence
and usefulness in crystal chemistry. v

After a general introduction including some mathematical theorems a catalogue of
about 30 nets gives, in most cases, the plane group short symbol, and the unit cell
parameters and the coordinates of the nodes in terms of unit spacing between nearest
nodes. Examples of their occurrence in compounds of established structure are given
in each case.

The related concepts of the dual of a simple net and primary and secondary nets
in less simple cases are then treated briefly.

Transformations between nets are discussed, also with crystal structure examples:
first in the case that there is no change in the shape of the unit cell, and using a
proposed ‘compatibility’ principle. It transpires that compatible nets are simply
derivable from one another, and that in most classes the simplest member is a regular
net (4%, 3%, or 6%). A few of the transformations are relatively well known, but most
are new. Together they emphasise the fact that crystal structures do not constitute
a massive collection of unrelated types, but rather a group of patterns largely derivable
one from another by a few simple, geometrical-crystallographic operations. Here, as
elsewhere in the paper, it frequently occurs that transformations are equivalent to
the regular incorporation of ‘point defects’ (missing atoms = ‘vacancies’ or ad-
ditional atoms = ‘interstitials’). Hence ‘point defects’ may be readily generated (even
in very small concentrations) by cooperative operations, without any need for long-
range diffusion of single atoms. This possibility is not generally considered in theories
of diffusion in solids.

Another type of transformation involves slip, and does result in a change in the
shape of the unit cell, sometimes by a homogeneous deformation. It allows trans-
formation between different (compatibility) classes of nets.

§ 9 deals with the (hexagon—pentagon—triangle) net description of ‘tetrahedrally
closed packed’ alloy structures — Frank-Kasper and Friauf-Laves phases —and
transformations relating them. The B-UzOg and related nets discussed in § 10 are some-
what similar, but also contain quadrangles.

In § 11 a different type of operation is used to relate structures: adjacent planes are
combined by collapse to form a composite net on a single plane. This produces further
crystal structure relations that were not previously available, e.g. between ReOy,
HTB and the pyrochlore framework.

Finally, in § 12, some conclusions are drawn, and some of the more novel points
developed in the paper are summarized and emphasized.

PHILOSOPHICAL
TRANSACTIONS
OF

Y am

THE ROYAL A
SOCIETY

¢ Handeln vom Netz, nicht von dem, was das Netz beschreibt.’
L. WitTGENSTEIN: Tractatus Logico-Philosophicus

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

Py

V‘J \
Y,

N
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y am

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PLANE NETS IN CRYSTAL CHEMISTRY 555

1. INTRODUCTION

The difficulty of assimilating fully the nature and details of crystal structures and structural
relations has led to a number of different geometrical descriptions being employed. One of
the most powerful and frequently used describes structures as connected coordination poly-
hedra. Relations which may then be seen are alternative ways of connecting or orienting the
same polyhedra, or alternative polyhedra with identical arrays of vertices (i.e. alternative
ways of occupying the various interstices in a given array). However, there is an implicit
rigidity which is a drawback in this approach. It may inhibit consideration of structures
which, often, are not exactly of the ideal type; and of the possibility that there may be a more
or less continuous sequence of real structures between two or more ideal types of the same
stoichiometry (or even of different stoichiometries). Most such sequences will involve dis-
tortion of the coordination polyhedra themselves; a process that may be difficult to visualize.
Certain arrays of corner-connected polyhedra can be deformed without deforming the poly-
hedra or changing the topology of the structure. But this may also be difficult to visualize and
is, in any case, restricted to a relatively few structure types. Most notable perhaps in this
connection are the ReO,(D0,) structure type (Glazer 1972; O’Keeffe & Hyde 1977) and the
ideal cristobalite (C9) structure (O’Keeffe & Hyde 1976).

An alternative and complementary approach considers structures as stackings of two-
dimensional packings of atoms, i.e. layers. Such a description of structures based on closest
packing is indeed very familiar, but it is likely to be even more useful for describing those
structures in which the coordination polyhedra are ill-defined or undefinable, or those relations
or transformations that involve distortion of the coordination polyhedra.

Previous work relevant to this topic includes that of Wells (19544, b, 1970), who discussed
some plane nets as a prelude to a discussion of three-dimensional nets; but who focused atten-
tion mainly on their connectivity. Frank & Kasper (1958, 1959), Shoemaker & Shoemaker
(1968), Sinha (1972) and others have given accounts of nets in some of the more important
and common alloy structures. Pearson (1972) considers inorganic and alloy structures but,
apart from the closest-packed case, the discussion of the more ionic (‘inorganic’) crystal
structures in terms of layers is much less well-developed than the coordination polyhedron
approach. In our view this is unfortunate: the net description can be rewarding, and deserves
to be more fully developed and widely used. Accordingly, in this paper we will attempt to
redress the balance by also emphasizing ‘inorganic’ structures and the nets they contain.
However, alloy structures cannot, and should not, be excluded. Their customary separation
is artificial, unnecessary and detrimental to an appreciation of crystal science as a whole. In
inorganic structures the conventional cation/anion radius ratio is usually less than one: in
many alloys, the corresponding atom radius ratio is greater than one, and hence a wider
variety of nets (and polyhedra) is observed. However, it should also be observed that a large
number of structures are common to both alloys and inorganic crystals and, of course, any
purely geometrical descriptions and correspondences are equally valid for both types of
material.

We first describe some of the simpler and more important two-dimensional arrays, together
with some example of structures containing them.t We then discuss transformations between

+ When specific references are not given, reference for alloy structures may be made to Schubert (1964) or to
Pearson (1972) and for ionic crystal structures to Wyckoff (1963) and Povarennykh (1972).
38-2
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556 M. O’KEEFFE AND B. G. HYDE

the nets, together with examples of relations between crystal structures. This aspect is usually
ignored, but we believe that it is here that the greatest power of the nets approach is mani-
fested. The approach yields some valuable insights into particularly geometrical factors deter-
mining structure and structural relations. Previous articles (Hyde ef al. 1972, 1974) dealt
briefly with only the simplest nets, and the topological relations between a few structures based
on them.

2. DEFINITIONS AND NOMENGCLATURE

A planar array of atoms may be represented by an array of circles in a plane. Niggli (1926,
1928) systematically derived and discussed all the possible packings of equivalent circles (see
also Haag, 1929). An excellent account of the mathematical aspects of this and related topics
has been given by Fejes Téth (1964). However, many of the more interesting patterns that
we wish to discuss have not been formally described before —in part at least, because they
do not appear to arise naturally in a formal mathematical treatment.

If the centres of contiguous (or almost contiguous) circles are joined with straight lines, these
form a two-dimensional nef, and the plane will be covered with polygons forming a fessellation.
The centres of the circles are now referred to as atoms or vertices and the lines joining vertices
are bonds or edges.

The terms ‘vertices’ and ‘edges’ are more appropriate to the formal description of patterns;
atoms and bonds to the description of crystal structures. To emphasize the latter we often
draw small circles, representing atom positions, at the nodes/vertices of the nets. We will also
use the terms ‘net’ and ‘tessellation’ interchangeably according to whether we wish to
emphasize the topological or metrical aspects of the geometrical pattern.

Vertices are conveniently described by the Schlafli symbol which specifies the not-necessarily-
regular polygons meeting at the vertex in cyclic order (Cundy & Rollet 1961). Regular tessel-
lations are those composed of congruent regular polygons and the symbol for the vertex figure
can also serve as the symbol for the tessellation. The three regular tessellations (figures 2-4)
are thus 38 44 and 63. Note that we use bold face symbols to specify a net or tessellation and
symbols in ordinary type to specify a type of vertex (atom).

Semi-regular tessellations employ more than one kind of regular polygon, but all vertices
are congruent. They are analogous to the Archimedean solids and sometimes referred to as
Archimedean tessellations. There are eight semi-regular nets or tessellations, namely 346;
3%.42; 32.4.3.4; 3.6.3.6; 3.4.6.4; 4.8?; 3.12% and 4.6.12 (figures 5-12).

Even with just two regular polygons (e.g. squares and equilateral triangles) an infinite
number of tessellations is possible. For obvious reasons, our interest is mainly in those patterns
which are periodic in two dimensions and with a small number of vertices in the repeat unit
(unit cell). There appears to be no systematic nomenclature for such patterns. We have
devised one that is a little cumbersome and often we prefer to employ trivial names.

The basic topological property of an infinite tessellation on the Euclidean plane is that the
sum of the number of vertices and polygons is equal to the number of edges, V+P = E
(Coxeter, 1961). From this, and the fact that each edge joins two vertices and separates two
polygons, one can derive a useful relationship between the fractions of the various types of
polygon and the number of polygons meeting at a vertex. Specifically, if ¢,, is the fraction of
polygonsin a tessellation that are n-gons and f; is the fraction of vertices at which 7 polygons meet,

1/2”¢n+1/ziﬁ = %a (1)
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PLANE NETS IN CRYSTAL CHEMISTRY 557

a result that does not appear to be well known although it is extensively used by Wells (1954 a,
b) for the special cases of constant 1.

An example of the use of this formula is provided by the large class of 4-connected nets
(1 = 4) involving triangles, quadrangles, and pentagons. For these, one must have the number
of triangles equal to the number of pentagons (see also Smith (1968) for related formulae).

3. TESSELLATIONS INVOLVING IRREGULAR POLYGONS

There is no way to cover the plane with regular figures if pentagons (or indeed heptagons
and many other polygons with more sides, but of less interest here) are to be included. How-
ever, nature has devised a number of very elegant arrangements of atoms corresponding to
tessellations of ‘almost’ regular figures in which pentagons and, to a lesser extent, heptagons
are conspicuous. Some of these are described below. In order to arrive at a unique metrical
description of such patterns, we have (except as noted below) considered the arrangement
of regular figures that most nearly cover the plane without overlap and with the same symmetry
as the real pattern. There will be two complementary classes of vertex: those like 3.5.3.5
which will have gaps between the edges of some of the polygons, and those like 3.5.4.5, where
the corners of the polygons cannot quite meet. In these cases, the centre of gravity of the
polygon corners is taken as the atom position. This procedure gives coordinates very close to
those found in nature in many instances.

It is known (see, for example, Cundy & Rollet 1961; MacMahon 1921) that the plane can
be covered by equal-sided (but not regular) pentagons with two angles of }n (MacMahon’s
net no. 18 below). (More specifically, the angles in order are 3w, [$n — (}) arccos §] (twice),
im, [3n+arccos £].) But these cannot be combined with regular polygons to cover the plane.
Equation (1) shows that any tessellation of pentagons must have incongruent vertices. Many,
but not all, of the patterns involving pentagons can be reproduced only if the other polygons
are also irregular and a study of plane coverings with irregular polygons soon becomes very
complex. There is however, an important class of nets (e.g. numbers 20, 23, 24, 25 below)
made from equilateral triangles, squares and pentagons of equal sides with angles of %,
{4n +arccos [$(y/3—1)]}, {n +arcsin [4(y3~1)]} (twice) and {}n +arccos [3(y/3—1)]}.

In this context, it is useful to consider tessellations involving vertices n,. 7, ... n; ... (i.e.,
vertices common to n,-gon, n,-gon, ... n;-gon ...). The angular defect of a vertex k is then
defined as &, where

8 = 2a[1—E(h—1/n;)]. (2)

Clearly, 8, is the difference between 2n and the sum of the angles of (possibly partly overlapping)
regular polygons meeting at a vertex. For a tessellation of convex polygons

ka 310 =0, (3)

so that only appropriate combinations of vertices with positive and negative & can yield a
tessellation.t Therefore, any tessellation involving pentagons must have at least two kinds of

t Equation (3) is just a special case of the general result that the integral curvature of a space is equal to 2ry,
where x is the Euler—Poincaré characteristic of the space (Coxeter 1961). For the Euclidean plane x = 0. The
corresponding expression for convex polyhedra (y = 2) is Descartes’ formula (Coxeter 1948): X8, = 4.
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558 M. O'KEEFFE AND B.G. HYDE

vertex, and any tessellations of congruent z-gons must have n < 6.1 This may be seen by
inspection of table 1 which lists the angular defects in degrees at some likely vertices (atoms)
with small values of |d;|, which is useful for deciding the ratios in which vertices must appear.

TABLE 1. ANGULAR DEFECTS (IN DEGREES) AT SOME COMMON VERTICES

vertex 3600/2n vertex 3608/2n
58 36 3.6.4.6. or 3.4.6% —30
3%2.4.6 or 3.4.3.6 30 533 —24
32,52 or 3.5.3.5 24 78 — 253
4.7 128 25 —18
5.82 18 52.8 -9
3.4%.5 or 3.4.5.4 12 3.4.7.4 or 3.4%.7 —8%
5.6% 12 3.4.5% or 3.5.4.5 -6
345 12

4. DESCRIPTION OF SOME NETS

We now enumerate the basic properties of some nets and, for the less familiar, provide
examples of their occurrence. Some of course are sufficiently well known that detailed dis-
cussion here would be superfluous.

A convenient and complete specification is to give the unit cell and coordinates of the
vertices; this proves very useful in discussing transformations between nets. We give the two-
dimensional space group short symbol and vertex (atom) positions according to the Wyckoff
notation as specified in the International Tables for X-ray Crystallography (Henry & Lonsdale
1965). The only invariant complexes are the regular nets and 3.6.3.6; for all the other nets
numerical values of the coordinates are calculated as described below. The lattice parameters
are calculated for (shortest) edge lengths of unity. The density, p, is the fraction of the plane
covered by circles of unit diameter. The numbers 4 and B are defined below (§ 7).

The essential topology of the net can often be described by specifying what we term a
minimum figure. This is an extension of the Schlafli notation for regular and semi-regular nets.
The minimum figure is specified by providing in cyclic order, the symbol for each vertex of
a polygon. Many of the nets in this paper can be specified in this way. The symbolism is best
illustrated by example. Consider the net shown in figure 16 commonly called the p-W net.
The vertices of each of the triangles in the net are 3.6.3.6, 32.62, and 32.62%. It is easy to show
that there is only one net, the one under discussion, in which every triangle is of this type.
Accordingly, we symbolize the net by [3.6.3.6, (3%.6%)%]. A second example must suffice. In
the net in figure 22(a), all triangles have the same sequence of vertex symbols [(3.5.4.5)%,
3.5.3.5]. This symbol again completely specifies the net if it is understood that every triangle
has the same sequence of vertices. _

It might be remarked that although we require polygons in the minimum figure to be
similar in type and sequence of vertices, they may well be different in their edge sharing.
In this latter sense, it may be seen that even in the semi-regular net 3%6 (figure 5) there are
two types of triangles (namely, those sharing edges with three triangles and those sharing
edges with two triangles and a hexagon) although all vertices are, of course, equivalent. It

+ It should be noted that the Euler condition ¥+ P = E, and equivalently equations (1)-(3), is a necessary
but not a sufficient condition for the existence of a tessellation. Thus 5%10 is compatible with this condition but
does not exist.. A complete enumeration of impossible tessellations with one type of vertex and satisfying the Euler
condition is 3%.62, 3%.4.12, 3.4.3.12, 3.4%.6, 3.8.24, 3.9.18, 3.10.15, 5°.10.
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PLANE NETS IN CRYSTAL CHEMISTRY 559

might also be remarked that it is easy to devise nets that cannot be uniquely defined by the
order of vertices of a polygon even though all polygons with the same number of edges are
equivalent in the local sense of having the same types of vertex in the same order. The two nets
of figure 1 can readily be seen to have equivalent triangles, quadrangles and hexagons in this

Ficure 1 (a) AND (). Two topologically different nets with nodes of the same kind.

sense. The shortcomings of the Schlifli notation are apparent in its application to polyhedra
also. There are, for example, two distinct convex polyhedra with the symbol 3.43 (Miller 1930).
For moderately complex nets (tessellations) the most economical description of the topology
appears to be a drawing of the repeat unit. -

(a) Regular nets
(1) 38 pbm; a = 1. 3%in 1(a). p = /i = 0.9069. B = 1. Figure 2.

This is the well-known triangular net formed by closest packing of equal circles in a plane.
The closest packing of equal spheres is obtained by stacking 38 nets of unit spheres a distance
of 4/% apart. The basic properties of structures formed by stacking these nets have been known
since Barlow’s researches of the last century and are now to be found in elementary texts.

(2) 4% pam; a = 1. 4%in 1(a). p = }n = 0.7854. A = 1. Figure 3.

This is another entirely familiar net occurring most notably in cubic closest packing (face-
centred cubic), in simple cubic and in body-centred cubic three-dimensional arrays.
(3) 63 pbm; a = /3. 63in 2(b). p = /&y ® = 0.6046. B = 2. Figure 4.

This is the honeycomb net familiar in graphite and as cation layers in ionic crystals such as
corundum (Al,O;). Another example of its occurrence is provided by the B net in AlB,.
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i

FiGURE 3. Net 2 (4*).

Ficure 4. Net 3 (6%).

(b) Semi-regular nets
(4) 3%6. p6;a = /7. 346in6(d),x = 2,y = L. p = ¥ = 0.7773. B = 2. Figure 5.

This is the only one of the regular and semi-regular tessellations lacking a mirror plane
The enantiomorph of the tessellation given above is obtained by putting atoms in 6 (d) witl
x =%,y = 3. The I atoms in [C;H,NH]Ag;I; are arranged on alternating enantiomorphs o
346. (Geller 1972). Other examples of its occurrence are in the anion nets of KOsFg anc
Pr,Oy,.

FIGURE 5 (a) AND (b). Two enantiamorphs of net 4 (3%6).

(5) 3342 cmm; a =1, b = 2+,/3. 3342 in 4(e), y = (1+4/3)/(4+243). p = n/(2+4/3) =
0.8418. Figure 6. ‘

This net is intermediate between 38 and 4% and is the only regular or semi-regular tessellation
without a four-fold or six-fold axis. It is of some importance in the description of structures
intermediate between close-packed and simple cubic (Hyde et al. 1972). A puckered (non-
planar) approximation to this net occurs parallel to {1011} in hexagonal close-packing. [The
corresponding nets in cubic close-packing are 4* or 38 In mixed stackings, if 4 represents a
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PLANE NETS IN CRYSTAL CHEMISTRY 561

row of squares, and 3 represents a row of triangles (directions parallel to the close-packed rows),
then # = 4.3 or 3.4 and ¢ = 4.4 or 3.3. So
he = ..4.3.3.4.4334...,
h% = ..4.3443443... or ..3433433...,
het = ...4.3.334443...,
h%? = ..4.3.44.4.3444...]

It also occurs in structures such as that of TII and, somewhat distorted in SnS. 3342 packings
of equal spheres can be stacked at the ‘closest packing’ spacing of 4/%.

ESEEN
AVAVAVAVAVAN
SN

10

Ficure 6. Net 5 (3%.4%).

(6) 32.4.3.4. pag; a = (2+4/3)% 32.4.3.4 in 4(c), x = 1-}[(2—4/3)/(2+4/3)]F = 0.1830.
p =mn/(2+4/3) = 0.8418. 4 = 1. Figure 7.

This net is of equal density to the previous one. It is the densest packing of equal circles
with four-fold symmetry, in which all circles are equivalent. (An example with the same
density and with four-fold symmetry but with non-equivalent circles is no. 12 given below.)
It is of great importance in alloy structures and has been discussed in that connection par-
ticularly by Frank & Kasper (1959) and by Pearson (1972). The CuAl, (C16) structure is a
well-known example in which (001) Al nets of this type are stacked with the origins of success-
ive layers displaced by 1. 32.4.3.4 nets of unit spheres can approach within /4 (the distance
apart of 3% layers in closest packing) in this configuration. Other examples of its occurrence
include the structures of Pt;Ge, TlSe, CoGa,, U,Si,, PdS, Pb;O,, the Ln nets in LnAug and
K in K;W,0,; (tetragonal tungsten bronze). Again it is of importance in being transitional
between 38 and 44

Ficure 7. Net 6 (3%.4.3.4).


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

562 M. O’KEEFFE AND B.G. HYDE

(7) 3.6.3.6. p6m; a = 2. 3.6.3.6 in 3(c). p = ¥ = 0.6802. B = 1. Figure 8.

This net is known to crystal chemists as the kagome net (Frank & Kasper 1958) after the
three-way bamboo weave, and is found extensively in ornament. It is the only quasi-regular
tessellation (Fejes TSth 1964; all edges as well as vertices are equivalent) and again is of
very wide occurrence in alloy structures, e.g. (0001) planes of Fe in W¢Fe,;, Zn in MgZn,
and CaZn;. In oxide chemistry it occurs, notably as (111) layers of oxygen in the ReO;(DOy)
and NbO structures, and in some network silicates, e.g. cymrite, BaAlSi;O5(OH); and also
very frequently in cation planes (e.g. in the structures of spinel, NbO and pyrochlore).

Fioure 8. Net 7 (3.6.3.6), the kagome net.

(8) 3.4.6.4. pbm; a = 1+,/3. 3.4.6.4 in 6(c), x = 1/(3 +4/3). p = 8tn/(4+28) = 0.7290.
B = 2. Figure 9.

This is another net often found in ornament. It occurs notably as a pattern of anions in the
hexagonal tungsten bronze (HTB) structure and in the BaSiFgq structure, and also appears in
alloy structures such as those of BaFe,Al, and HfMoB. The centres of the squares (tungsten
ion positions in HTB) are on a kagome net.

Fi1Gure 9. Net 8 (3.4.6.4).

(9) 4.8% pdm;a = 1+,/2. 4.82in 4(¢), x = 1/(2+2J2) p=mn/(3+2/2) = 0.5390. 4 =
Figure 10.

This is familiar as a tiling pattern but, in common w1th the next two, is of less frequent
occurrence in ionic crystals owing to the large size of the polygons and low packing density.
Wells (1954¢) has indicated the occurrence of this and the next two nets in hydrogen-bonded

crystals of organic molecules. It is more often found in alloy structures, for example those of
UB,; and Mg,Ga;.
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Ficure 10. Net 9 (4.8%).

(10) 3.122. p6m; a = 2+4/3. 3.122 in 6(c), x = (1—1/4/3) = 0.4226. p = 3tn/(T+43) =
0.3907. B = 2. Figure 11.
This net has some interest as being that of the least dense stable circle packing (Niggli 1926).

Ficure 11. Net 10 (3.12%).

(11) 4.6.12. p6m;a = 3+4/3.4.6.12in12(f), x = (3J3+3)Ly = x+4.p = n/(3+2J3) =
0.4860. B = 1. Figure 12.

As with the previous net, the low density and large polygons render this net relatively un-
important in the description of ionic crystal structures, however an example of its occurrence
(slightly puckered) is as the Si net of a Si;;O,, layer in the mineral pyrosmalite.

(¢) Non-regular nets with regular polygons

There are a number of important nets in which only regular polygons occur but in which
more than one type of vertex occurs. The possibilities are endless. We have restricted ourselves
largely to those nets that are of interest either by virtue of their frequent occurrence or because
of their importance to the subsequent discussion of transformations between nets. As long as
the restriction is to nets with regular polygons, the positions of the vertices are completely
determined. Nets are named by a minimum figure and/or trivial name.

(12) [3%.42, (32.4.3.4)’], UgMn. pdg; a = (3+,/3)/J/2 = 3.346. 32.4.3.4 in 8(d), x =
(6+412)-1 = 0.1057, y = 3x = 0.1830; 3%.42 in 4(c), x = (6+4/12)71 = 0.1057. p =
n/(2+4/3) = 0.8418. A = 3. Figure 13.

This is one of the simplest combinations of 32.4.3.4 and 32.42 vertices and appears to be the

only simple combination with square symmetry. Successive layers can be stacked in the same
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FiGure 12. Net 11 (4.6.12).

way as 3%.4.3.4 in CuAl,; there is then one site of eightfold coordination for every six atoms.
Filling this site, one has approximately the structure of UgMn. The {111} anion nets in bixbyite
(Mn,0O,), in the mineral natrolite, and in NaZn(OH),; and the Cd nets in As,Cd; also
approximate this net. In ZryAl; and WSi; they are slightly distorted with the two kinds of
atom segregated to the two types of nodes.

Ficure 13. Net 12 (UgMn).

(13) [(3%.4%)%, (32.4.3.4)%). pgg; 26 = a = 4(2+4/3)}. 3342 in 4(c), x = 0.4665, y = };
32.4.3.4in 4 (¢c), » = 0.2165, y = 0.3840. p = n/(2+4/3) = 0.8418. Figure 14.

This net may be considered the simplest member of a family of nets obtained by intergrowth
of 33.4% and 32.4.3.4. Reference to the figure will show that there are zig-zag chains of 33.42
(labelled B) and 32.4.3.4 (labelled o) parallel to b. In an obvious notation, this net may be
signified ...aB... Examples of its occurrence are in NijB; and in SrNb,O4 and one form of
CaTa,O4 (Jahnberg 1963). Two related examples may also be cited: ...aap... (figure 154)
contains the same vertices in the same proportions as the UgMn net, although the two nets
are topologically quite distinct. This net may be found in ‘Pd,4P’ and LaNbsO4 (Sturm &
Gruen 1975). The combination ...ap... (figure 154) occurs, slightly puckered, and parallel
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PLANE NETS IN CRYSTAL CHEMISTRY 565

FiGuRE 15 (a) AND (b). Two examples of intergrowth of 3%.4? and 3%.4.3.4.
o and B refer to chains of 32.4.3.4 and 3%.4% nodes respectively.

to (031) (setting Pnma), in compounds with the cementite (FezC) structure [but ...aq... parallel
to (010)].

(14) [3.6.3.6, (3%.6%)?], B-W. pmm; a = /3, b = 2. 3.6.3.6 in 1(b); 3262 in 2(h), y = }.
p =% m = 0.6802. Figure 16.

This is a simple example of a hexagon and triangle net with two types of vertex and is found,
for example, as the Cu net in CuzAsS,, and the Au net in PrAug (Moreau & Parthé 1974).
Somewhat distorted (so that ¢ = §) and alternating with 4% nets it occurs in the so-called
‘B-W’ structure of, e.g. CrgSi. This is also the arrangement of cations in the garnet structure.
The metrically square net with 2 = b we refer to as no. 14*.

Ficure 16. Net 14 (B-W).
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(15) Kagome tiling. $2; a = b = /13, o = 2 arctan (342) = 92.20°. p = 33l5n = 0.6651.
Figure 17.

This net is discussed by Frank & Kasper (1959) and is mainly of interest in a discussion of
alloy structures (cf. also SmAug; Moreau & Parthé 1974). It will be encountered later in
discussing transformations between nets. It contains four 32.6%, two 63 and five 3.6.3.6 vertices
and is best described by the diagram.

Ficure 17. Net 15 (kagome tiling).

(16) (a) [(3%4.3.4)% (3.4.6.4)%]. pb6m; a = 2+./3. 3%.4.3.4 in 6(¢), x = (1+./3)/(3+24/3);
3.4.6.4in 6(d), x = 1/(2+4/83). p = 0.7813. B = 1. Figure 18 (a).

This net is a simple combination of 32.4.3.4 and 3.4.6.4 vertices. It is not one that we have
discovered in nature.

Ficure 18. (a) Net 16 (a), (b) Net 16 (b).

(0) [(3%.4%)2, (3.4.6.4)%]. pbm; a = 2+,/3. 33.42in 6(¢), x = (1+4/3)/(3+2,/3); 3.4.6.4
in 6(c), x = 1/(3+2y3). p = 0.7813. B = 1. Figure 18(5).
This net is closely analogous to the previous one. It occurs slightly distorted in the structure
of PbNb,O4 (Mahe 1967).

(17) (Not named) p4g;a = /8+,/6.324.3.4in8(d),x = 1/(2+4/3),y = 0; 32.4.3.4in 8(d),
x =y = (1+4/3)/(8+4y/3); 3.4.6.4 in 8(d), x = (1+cos (#n))/(yJ8+4/6), y = (sin (Fn))/
(V/8+4/6); 3.4.6.4in 4(c), x = (1+4/3)/(4+4/12). p = 0.7894. Figure 19.

This net is included as an example of an intergrowth of 3.4.6.4 and 3%.4.3.4 with square
symmetry (compare no. 16a and below, p. 610 for intergrowths with different symmetry).
Also of interest is the net obtained when the hexagons are centred (by adding 3% nodes at
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PLANE NETS IN CRYSTAL CHEMISTRY 567

2(b): 0,3%; 1, 0). One then has an intergrowth of 3% and 32.4.3.4 with square symmetry, and
the density is p = 15n/(28 +16,/3) = 0.8458. This is the densest net with square symmetry
that we have discovered.

Ficure 19. Net 17.

(d) Nets with pentagons and heptagons

We now describe some nets involving irregular polygons. At this stage, it does not appear
fruitful to attempt to be either systematic or exhaustive. Even with pentagons alone, there are
unlimited possibilities. Pentagon-only nets can be derived as the duals of the five-connected
nets described above (i.e., derived by joining the centres of the polygons of those nets). One
such, the dual of 3%.4.3.4, is topologically equivalent to MacMahon’s net mentioned above;
the others appear to be of less interest. The nets we describe are all of considerable importance
in crystal chemistry. As already discussed, there is some arbitrariness in assigning coordinates
and cell dimensions and for some less common nets we give the coordinates found in crystal
structures.

(18) [(5%)?, 5% 5% 5%, MacMahon’s net. pdg; a = (4+4/7)¥ = 2.578. 5%in 2(a); 5% in 4 (c),
x = 0.637. p = 0.709. A = 3. Figure 20. '

We have already discussed this net above. The coordinates are for pentagons of equal edge.

It occurs as an oxygen and a vanadium net in K,V;O4 and in the isostructural Ba,TiSi,Og

Ficure 20. Net 18 (MacMahon’s net).
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(Moore 1967). The minerals of the melilite group, (Ca, Na),(Mg, Al, Si);0,, and many othe
compounds with the same structure have the same cation positions as K,V,Oq4 so that th
smaller ions (Mg, Al, Si) in melilite are also on this net, and indeed have very nearly the cc
ordinates given above. The structures of many of the transition metal pnictides and chalcc
genides can be described in terms of stacking of puckered versions of these nets with catior
at the 5% vertices and anions at the 5% vertices (Jeitschko 1974).

(19) [5% 3252, (3.5.4.5)2, 32.5%]. p4m; a = 3. 5%in 1(a); 32.52 in 4(d), x = §; 3.5.4.5in 4 (¢

= 0.2765. 4 = 1. Figure 21.

This simple net occurs as the Mn array in ThgMny,. It is of some importance as the protc
type of families of more complex nets, and because it is simply derived from 4% The coord:
nates in this instance are chosen as follows: the 32.5% vertices are arranged to divide the ce
edge into equal lengths, so that one triangle edge and two pentagon edges are $a. This :
required for subsequent derivation of other nets from this one. The coordinates of the 3.5.4.
vertices are then a compromise between having equilateral triangles (¥ = 713) and havin
the edge of the square equal to }a[x = ¥(3—4/2)]

Frcure 21. Net 19.

(20) [(3.5.4.5)% 3.5.3.5]. pdg; a = 3+ (3+4/5)F = 3.4010. 3.5.3.5 in 2(4); 3.5.4.5 in 8(d)
= 0.064, y = 0.208. p = 0.679. 4 = 1. Figure 22a4.

This is another simple tessellation involving pentagons that is of wide occurrence in crystal:
To illustrate the method of deriving the coordinates, the ‘best’ covering of the plane wit
regular polygons of the same edge-length is shown in figure 225. The Hg atoms in Mn,Hg
have this arrangement with ¥ = 0.063, y = 0.204. In this compound the Mn atoms are centre:
over the pentagons in a 3%.4.3.4 net. The oxygen atoms (Oj) in the primary (001) layers c
K,V,O; are on this net: the potassium atoms in this compound are arranged as are the M:
atoms in Mn,Hg, (i.e. on a 3%4.3.4 net centring the pentagons). Another example of it
occurrence is as the W net in the tetragonal tungsten bronze structure (see below). An alter
native derivation of the coordinates of the vertices of this net is obtained by making all edg
lengths equal. One then has squares and equilateral triangles combined with the pentagon
described earlier (with angles of 2w, {{,m +arccos 3(/3—1)}, {3n +arcsin }(/3—1)} (twice)
and {{n +arccos (43 —1)}). For these conditions, ¢ = 3.248 and x = 0.080, y = 0.203, i.c
very close to the configuration shown in figure 22a4.

(21) [5.43, 5.4.3.4, 5.43, (5.4.3.4)%], tetragonal tungsten bronze. pdg; a = 2+ (§+4/5)}+
Ji = 4.815. 543 in 8(d), x = 0.071, y = 0.154; 5.4.3.4 in 8(d), x = 0.353, y = 0; 5.4.3.
in 4(c), x = 0.200. p = 0.6775. 4 = 1. Figure 23.
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Ficure 22. (a) Net 20. (b)) Regular polygons corresponding to those of net 20
arranged to cover the plane as well as possible.

Ficure 23. Net 21 (tetragonal tungsten bronze).

This is the primary oxygen net of tetragonal tungsten bronze, K;W;O,;. The coordinates
given above were determined from the ‘best-covering’ of regular polygons and are very close
to those originally determined by Magnéli (1949). A large and important group of oxides
has since been discovered with related structures based on the same net (see e.g. Jamieson et
al. 1968).

39 Vol. 295. A
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(22) [(5%3)%, 5%, 53.3, 5%]. p31m; a = 2.803. 5% in 2(b); 53.3 in 3(¢), x = 0.291. p = 0.5771.
B = 5. Figure 24.

The coordinates correspond to a ‘best-covering’ by polygons. This is the major (0001) net
of (five-eighths of) the oxygen atoms in a-U;Og. U and the remainder of the O atoms are on
38 nets centred over the pentagons. The same arrangement prevails in the ThyPd;: the Pd
atoms are at the vertices of this pentagon-triangle net and the Th atoms on a 3% net centred
over the pentagons. The K and V atoms of K;V;0,, have the same arrangement as the Th
and Pd atoms of ThyPd;. Other examples of the occurrence of this net are in Na,Nb,O,; and
CaTa Oy, (Jahnberg 1970). Often it occurs with different types of atoms at the different sorts
of vertices. Examples are provided by the structures of Fe,P and SrCl,-6H,0O.

Ficure 24. Net 22.

(23) [(3.4.5.4)% (3.5.4.5)%]. p31m; a = 3.297. 3.4.5.4 in 3(c), x = —0.175; 3.5.4.5 in 6(d),
x = 0.175,y = 0.478. p = 0.751. B = 1. Figure 25.

This and the following two nets may be constructed from the same polygons as described
for net 20 (in different proportions). The net occurs parallel to (111) in -Mn and as oxygen
nets in K3V;0,, and in the related compounds Ba;Si,TagO,4 and ‘Ba,Si,TagO,;° (Shannon &
Katz 1970). The centres of the squares and those triangles not at the origin are the V positions
in K3V;0,, and are of course the vertices of the previous net (no. 22).

Ficure 25. Net 23.

(24) [3.5.3.5 (3.4.5%)°]. cmm; a = 2.732, b = 3.861. 3.5.3.5 in 2(a), 3.4.5% in 8(f), x = 0.317,
y = 0.129. p = 0.745. Figure 26.

This is the anion net of B-U;O,4 and NbyO,F-IT (Lundberg 1971) and the primary net in
Mn,Si,C (Spinat ef al. 1975). It is closely related to net 22 (the net for a-U,Og). In making the
comparison with no. 22, we will want to consider this net as metrically hexagonal, i.e. with
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b/a = /3 rather than b/a = (2+12%)/(1+4/3), given above. We will then label the net no.
24 %,

FiGure 26. Net 24.

(25) [3.4.5.4, (3.4.5%)2]. pmg; a = 2.732, b = 2.207. 3.4.5.4 in 2(c), y = 0.069; 3.4.5% in
4(d), x = 0.567,y = 0.287. p = 0.751. Figure 27.

This net is closely related to the two preceding. Examples of its occurrence are in CeCu,
(somewhat distorted) and in UVOj (Chevalier & Gasperin 1970).

Ficure 27. Net 25.

(26) [(4.72)2, (73)2, (4.7%)2, 73]. p4g; 7% in 4 (c), x = 0.087: 4.7%in 8(d), x = 0.170, y = 0.042.
4 = 3. Figure 28.

This net is included as a simple (and very symmetrical) net involving heptagons. It occurs
in the borides with the ThB, structure and in YB,C. The coordinates are those for ThB,.

Ficure 28. Net 26.

39-2
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The centres of the heptagons are at the vertices of 32.4.3.4. Such a net of Th atoms occurs i
ThB,.

(27) [9% (3.9%)% 93, (3.9%)% 93, (3.9%)%]. p3ml; a = 1+,/3. 9% in 1(b); 3.9% in 3(d), x =
(1+243)/(3+3,/3) = 0.545. p = 0.486. B = 1. Figure 29.

This net is probably the simplest containing enneagons. The coordinates are chosen so tha
all edges are equal (and the triangles equilateral) ; they are close to those observed in crystals
It occurs as a Ru net in Ru;B; and in the many isostructural compounds and as S nets i1
compounds with the LagCuSiS, structure (Flahaut & Laruelle 1970). Both of these closel
related structure types may be described elegantly as a stacking of nets (but more elegantl
in terms of coordination polyhedra (Hyde ¢t al. 1974)).

Ficure 29. Net 27.

(e) Some other nets containing heptagons and octagons

There are several nets occurring in borides that can be considered as derived from 63. Thes:
are three-connected and contain pentagons and heptagons as well as hexagons. Equation (1
shows that for such nets ¢, = ¢,. Simple possibilities are:

(i) ¢5 = ¢, = 0. This is just the 6% net of YB, (=AlB,).

(ii) ¢5 = ¢, = }. An example of a net fulfilling this condition is shown in figure 30 (¢) anc
is the B net of YCrB, (Kuz’ma 1970). Y and Cr atoms are over the centres of the heptagon:
and pentagons respectively. The same net (plane group pgg) occurs in ScB,C,.

(iii) ¢5 = ¢, = 4. The net shown in figure 30(4) fulfills this condition. This is the B ne
in Y,LnB; (Kuz’ma & Svarichevskaya 1972). It also has symmetry pgg.

Ficure 30. (a) The B net of YCrB,. (b)) The B net of Y,LnB,.
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Other examples of nets made up of equal numbers of heptagons and pentagons are given
by Wells (19544).

Included here is a simple net of octagons and pentagons (figure 31). The symmetry is
emm and it contains 5.82 and 52.8 vertices in the ratio 1:2 (compare table 1). An example of
its occurrence is as the Si net in the layer silicate okenite, CaSi,O;- 2H,0.

FIGure 31. A net with 52.8 and 5.82 vertices.

5. DUALS, AND PRIMARY AND SECONDARY NETS

In the present context a crystal structure is a sequential stacking of appropriate nets. Packing
considerations imply that the nodes in one net will, in projection, usually appear at or near
the centres of the polygons in the adjacent net. The geometrical concept of the dual of a net
is relevant here. Coxeter (1961) defines the dual of a regular net n® as another net (it is, in
fact, m®) whose edges are the perpendicular bisectors of the edges of n®™. This construction
is equivalent to joining the centres of adjacent polygons in n™; a procedure which is less
ambiguous in the case of non-regular nets.

FIGURE 32. (a) The Al net (large circles) and the B net (small circles) in AlB,. (b) The W net (large circles) and
the C net (small open circles) in WC. Filled circles represent sites occupied by B in AlB, but empty in WC.

In the simplest structures, for example, those based on a close-packed array of one species
of atom, the main nets are regular, 38 or 4%, and the subsidiary nets (of ‘interstitial” atoms) are
their duals (e.g. AlB,, figure 324) or, more commonly, an incompletely occupied dual (e.g.
WG, figure 325). (Partial occupancy of the nodes of a dual by atoms is obviously quite com-
mon.) In this latter case the ‘interstitial’ net is often the dual of a net formed by combining
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Ficure 33. 3% interstitial net (dotted lines) as the dual of 6 formed by
superposition of two 3% nets (full and broken heavy lines).

THE ROYAL A
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both adjacent nets, one above and one below. For example, in close-packed structures this
combined net may be 63, and the appropriate dual 3¢ (e.g. NaCl, figure 33).

In more complicated structures the concepts analogous to a net and its dual are the primary
and secondary nets, introduced by Frank & Kasper (1958). In a primary net or layer the node
intervals correspond to atoms in contact: in the structures of the Frank—-Kasper phases it is a
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relatively dense tessellation of triangles and pentagons and/or hexagons. Intermediate layers,
in which the atoms are more widely spaced, are secondary nets. They are not duals, since they
connect the centres of only the larger polygons of the primary net. (The smaller ones are
usually centred by atoms at the nodes of the other nearest primary net.) They are tessellations
of large squares and/or triangles. Several examples are given in the figures of § 9. The struc-
tures of CuAl,, and Mn,Hg; provide simpler examples: in the first, the primary nets are Al
in 3%.4.3.4 and the secondary nets, produced by centring the squares, are Cu in 4%; in the
second, the primary nets are Hg in type no. 20 and the secondary nets, produced by centring
the pentagons, are Mn in 3%4.3.4.

p
[\ \

6. NON-REGULAR NETS: THE SEGREGATION OF DIFFERENT ATOMS TO

i DIFFERENT NODES

S E Only the simpler structures consist of regular and/or semi-regular nets in each of which all
= E nodes are identical. This is not the case with non-regular nets in which, not surprisingly, it is
O commonly (but not invariably) observed that, if more than one type of atom is present, the
O different species are accommodated at the different types of node. Examples have already been
=w given in §4.

7. TRANSFORMATIONS BETWEEN NETS: COMPATIBILITY

The stacking of nets often provides a concise and convenient description of crystal structures.
However, it is our thesis that a major advantage of this approach is that an understanding of
transformations between nets leads correspondingly to relations between crystal structures.
Accordingly we now explore some ways in which nets are related.
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In an attempt to devise a systematic approach, it is convenient at the outset to divide nets
into two main groups, namely those belonging to the square system and those belonging to the
hexagonal system. Several non-regular nets may not strictly belong to either system but are
conveniently idealized. Thus, no. 14* is considered pseudo-square and no. 24* pseudo-
hexagonal. The very few simple nets that do not belong to either system, most notably 33.42,
are often transitional between a member of each system. (They are, of course, rectangular or
oblique.)

Nets belonging to the cubic or hexagonal systems are further subdivided into what we term
classes of compatible nets. These are simply nets for which there exists a common super-cell
with the same density of atoms. Transformations between compatible nets involve only move-
ments of atoms in the common super-cell and thus require no macroscopic shape change other
than a uniform expansion or contraction. These transformations often involve rotation of a
group of atoms, such as at the corners of a polygon, combined with a uniform displacement
from the centre of rotation. Applied to crystal structures this type of motion may often in
turn be identified with rotation of a coordination polyhedron or group of polyhedra about a
symmetry axis.

It may readily be shown that for nets of the same symmetry system to be compatible, the
number of atoms, N, in the unit cell of each net must be expressible as

N = A(p*+ ¢?), square system,
N = B(p%+pg+ q?), hexagonal system.

Here p and ¢ are integers and 4 or B are non-zero integers that are the same for two
compatible nets.

One finds then that there are various classes of compatible nets charactenzed by the value
of A or B, where these are either equal to unity or to another integer such that 4 has no factors
of the form p%+¢* (square system) and B has no factors of the form p2+pg+¢% (hexagonal
system).

TABLE 2. NETS LISTED BY COMPATIBLE CLASs}

square system hexagonal system
A= 1:2(4%, 6, 9, 19, 20, 21. B = 1:1(3%, 7, 11, 16, 17, 23, 27.
A = 3: 12, 14*, 18, 26. B = 2: 3(6%, 4, 8, 10.
B = 5: 22, 24%.
t The net numbers are those used in the text, § 4.

Interestingly, most of the more common nets fall into three classes, the simplest member of
which is one of the three regular nets. In table 2, the nets previously described are sorted into
compatible groups.

The advantage of this method is that transformations between nets of a compatible class are
usually easy to find and to describe. They may often be combined with transformations be-
tween the simple members of each class (which will involve a change in shape of the unit cell)
to transform a net of one class into a net of another class. We first discuss transformations within
a class.
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576 M. O’KEEFFE AND B. G. HYDE

(a) Square system

i) 4=1

The prototype of this class is the square net 4%: we will now show how other nets in the class
may be derived from it. Figure 34 shows the atomic displacements that transform 44 to 3%.4.3.4
(Bursill & Hyde 1972). In the figure we have emphasized two aspects of the transformation.
In the first place, it is considered as rotations of square groups of atoms by #;= rad. The second,
identical transformation converts squares of atoms into 60° rhombuses. In discussing crystal
structure transformations, either of these descriptions may be the more appropriate according
to whether one wishes to emphasize the rotation of coordination polyhedra or the collapse of
empty polyhedra. ‘

Ficure 34. Transformation from 44 to 3%.4.3.4.

Consider the three-dimensional lattice complex, with symbol J (Fisher et al. 1973) which is
the anion arrangement in the ReO, and perovskite structures, and the Cu arrangement in
CuzAu. It may be described as a network of corner-connected octahedral groups of atoms,
centred by cations in ReO, and perovskite and empty in CuzAu, or as primary 44 nets inter-
leaved by secondary 4% nets of half the density. Transformation of the superimposed primary
layers of 4% to superposed 32.4.3.4 corresponds to rotation of these octahedra about four-fold
axes. Just such a transformation produces the T, phase of NaNbOj from ‘cubic perovskite’.t

Structures related by the same operation are CugAu and IrySi (& low-temperature Pt;Si),
with USi (= high-temperature Pt;Si) having an intermediate configuration. (In low Pt,Si
there is a small monoclinic distortion, p = 88.1°). But now the rotations along a given axis
that operate on the primary 4% nets are alternately clockwise and anticlockwise, so that alter-
nate 3%.4.3.4 product nets differ in orientation by 4= rad, and are stacked anti-symmetrically
(figure 35). (By contrast, in the structure of U,Si, they superpose.)

The structure of CdAu, is a variant of the CugAu type which contains (001) antiphase
boundaries (R = $[110]) at intervals of 2¢(CugAu). (This operation converts alternate (001)
layers of corner-shared octahedra to edge-shared square pyramids. At the same time, the Cd
atoms go very slightly off-centre.) If the complete [Aug] octahedra are rotated (exactly as in
CuAu;), CdAug transforms to ZnAug(R2). Interestingly, ZnAu, itself has both structure
types [(H) and (R2)].

Another simple example of a three-dimensional array based on 4% nets is the primitive cubic

t Chemical formulae in bold face represent structure types, not compounds.
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PLANE NETS IN CRYSTAL CHEMISTRY 577

Ficure 35. Stacking of 3%.4.3.4 nets of Ir in Ir;Si (at z = }, #). Small filled circles are Ir on
a secondary 4* net at z = 0, } and the larger open circles are Si positions at z=0, }.

array, for example in CsCl; transformation of the anion nets to 3%.4.3.4 produces low-tempera-
ture TISe (and also KHF,). (High-temperature T1Se is CsCl type.) Again, the major nets of
32.4.3.4 are stacked alternately obverse and reverse. The cation array (also 4* in CsCl) remains
44, but consists of two subarrays — each 4% on doubled edge. One, presumably TI, is in square,
30° antiprisms, [Seg]; while the smaller TI''" is in a [Se,] tetrahedron — both slightly com-
pressed in the ¢ direction. (If the TI* is substituted by Se we have a hypothetical T1Se; = anti-
low-PtgSi.)

Starting from the same 2 x 2 supercell of 44, other nets can be derived by varying the angle
of rotation. The product depends to some extent on the degree of contraction or dilation
accompanying the rotation operation. (Throughout, for convenience, we will keep the shortest
bond length constant.) Thus, 4% - 3%.4.3.4 requires a reduction in area of (2 +4/3). The nets
we will generate next involve an increase in area.

Figures 36 (a) and (b) show how rotation of squares by arctan { = 26.56° produces a net ()
that can be described as 4% with one-fifth of the atoms missing. Clearly the area has increased
by . Such a net is known in crystals, occurring for example as (very slightly distorted) the
primary (001) net of Ni in Ni;,P;, as the (001) Ni net in MoNi,, and as the cation net in Ti,O;
(Watanabe et al. 1970). It forms the starting point for deriving two other commonly occurring
nets. By collapsing the small squares in figure 36 (4) to rhombuses, or rotating half the large
squares (rather as in 4% - 3%.4.3.4) the net in figure 36 (¢) is produced. It is one in which half
the large squares have been converted into regular octagons, and is found, for example, as
the primary (001) net of Ni in NigP, which is of the FegP type. (Two [PNig] cubes in Niy, P,
[at 000 and }}1] lose their P and collapse to rhombic antiprisms. The composition change is
Ni,, P,y — 2P — Ni,,P; = 8NizP, an elegant method of accommodating changes in stoichio-
metry.) Clearly, it is also simply related to 4.8%, figure 36 (d), which is of wide occurrence in
crystals, including chalcogenides such as Pd;;Se;;. The net in figure 36 (c) transforms to 4.8
by appropriate rotations of the octagons; conversely, 4.8% — figure 36 (¢c) by collapsing all the
squares or rotating half the octagons.

Continuing the operation of rotating squares in 44 to 4*+one-fifth ‘vacancies’ up to a
rotation angle of 45° one gets 4.8? [figure 36 (d)] directly (rather than by the circuituous route
just described). The increase in area over 4% is § +:}; = 1.457, so that it could be formally
described as 4% with 31.379, ‘vacancies’.

A minor variation of the net in figure 36 (¢) is shown in figure 36 (¢). In this net, the octagons
and large squares are all converted into irregular but congruent octagons. Such an arrange-
ment is to be found in the structure of B-V,S.
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Ficure 36. Transformations of 4* (see text).

If the ‘vacant site’ in figure 36 () is filled, 4% is regenerated. The reverse operation [figure
36 (b) — figure 36 ()] will then generate interstitial atoms in a 4% net. Thus, local fluctuations
in density, commonly termed point-defects are readily produced by rotation mechanisms - in
this example and in many others — and normal atom diffusion is not essential.

The next group of nets is also derived from 4% by rotating square groups of atoms, but with


http://rsta.royalsocietypublishing.org/

y A\
Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V am ©

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PLANE NETS IN CRYSTAL CHEMISTRY 579

a different periodicity of the rotation centres. The super-cell of 4* now has an edge length of
2,/2, and there are two kinds of squares to be rotated: those at the origin and those at the
centre of the cell in figure 37 (a). Rotation of the former by 45° gives the net of figure 37 (5),
which is found, for example, in the (001) nets at z/¢ = 0, } in CagAgg (with Ca at 3.4.3.6 and
Ag at 3.6.4.6), in Pd,,Se,; [(001) nets of Se at z/¢c = }] and, somewhat puckered, as the
primary (001) oxygen net in narsarsukite (NaTiSi,O,,).

Alternatively, both sets of squares can be rotated, but in opposite directions. If the rotations
are +arctan } the net of figure 37 (¢) results. This is analogous (in the sense of having the same
density) to the net of figure 36 (), ‘4* with one-fifth vacancies’. Again, it is a common net in
crystals, occurring as the primary (001) net of Hg in Pd,Hg; and W in W,;Si;. If an atom is
put into the centre of the octagon, one has the Hg net of Mn,Hg; (net 20, see also figure 37 (d)
and below). And, if two silicon atoms are placed in each distorted octagon, one has the primary
(001) nets of W;Siz. These three structure types are thus rather elegantly related. In Ti;Te,
the same net [figure 37 (¢)] has [Te,] squares at 00 and [Ti,] squares at % (at z/c = 0, vice
versa at z/¢ = }). The difference in size between the squares slightly distorts the net.

Continuing the rotations that produced figure 37 (¢) until the rotation angle is 45°, one will
of course regain the 4.8 net.

FIGURE 37. (a)-(c). Transformations of 4* (see text). (d) The Hg net of Mn,Hg; (net 20).
The heavy circles represent atoms added to the net shown in (c).

So far, we have divided the 4% net into square groups that are rotated relative to each other.
A further variant is provided by changing the array of rotation centres so that isolated atoms
are left with their positions unaltered. Figure 38 shows three possibilities: starting from 4% in
figure 38 (a), net 19 is generated in () whereas, from 4%in (¢), net 20 is generated in (d). Note
that in figure 38 (d) the stationary, single atoms centre the distorted octagons of figure 37 (¢).
Hence, there is again a ‘vacancy’/‘interstitial’ complementarity between figures 37 (c) and
38(d); but they are both derived from the same array (4%), and therefore from each other, without
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adding or subtracting any atoms! In figure 38 ( f) we show an interesting net obtained from 44
[in figure 38(e)] by rotating isolated squares of atoms with rotation centres on an approxi-
mately 32.4.3.4 net in a 6 x 6 supercell of 4%. The derived net, containing hexagons, pentagons,
squares, and triangles, is in fact the (001) array of Mo atoms at octahedron centres in the
Mo;0O,, structure (cf. below).
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Ficure 38. Further transformations of 4*: to net 19 in (b), net 20 in (d) [= figure 37 ()], and
the (001) array of Mo in Mo;O,, in (f).

The final net in this class in table 2 is no. 21, the primary anion net of tetragonal tungsten
bronze (TTB). A formal derivation of the TTB anion net from 4% by rotation of isolated squares
is shown in figure 39 (¢). In making the transformation, some bonds common to a square and
a triangle have been omitted to make pentagons, a somewhat artificial procedure. In this
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PLANE NETS IN CRYSTAL CHEMISTRY 581

instance, it is more fruitful to consider the transformations of actual crystal structures in which
there is a network of corner-connected octahedra of anions with cations at their centres: the
arbitrariness in omitting lines then disappears. Elsewhere (Hyde & O’Keeffe 19734) we have,
in this way, discussed the derivation of several ‘bronze’-type structures from ReOjg which is
based on 4% anion nets. In figure 39 () a (001) layer of ReOj is related to a (001) layer of
tetragonal bronze type. Groups of four cations are rotated (the transformation being that of
4% to net 20 described above), and hence groups of four octahedra.

NN I S P

?@W \

| NN\
N Vs
N TR,

FIGURE 39. (a) Derivation of net 21 from 4%, () Derivation of the
tetragonal tungsten bronze structure from that of ReQj,.
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F1GURE 40. Derivation of the Mo;O,, structure from that of ReOj.
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There is good evidence, largely from high resolution electron microscopy (Iijima & Allpress
1974a) that in these instances the structural correspondences are more than formal. Crystals
containing coherent domains of both structure types and even isolated rotation faults (Bursill
& Hyde 1972) have been observed.

Clearly one should be able to derive M0;O,4 from ReOjy in a similar manner by using the
transformation of figure 38 (c) as a guide. This is shown in figure 40.

As a final example of the rotation of groups of squares (or octahedra in crystal structures)
we show, in figure 41, how the network of corner-connected octahedra in Nb,W,O;, (Iijima &

Y 4

< Allpress 197456) may be derived from ReOj in a manner similar to that in figures 39 and 40.
:é It can be seen that this structure is closely related to TTB and in fact is obtained simply by
> E omitting one-quarter of the rotations used to derive TTB from ReOj.
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F1cure 41. Derivation of the Nb,W,0;, structure from that of ReQOj.

As the rotation centres become more widely spaced, and for structures derived by rotating
squares by 45°, it may become more convenient to consider the derived nets as consisting of
tiles of unchanged 4% and tiles containing the unit of rotation. This point is illustrated in
figure 42, where a unit cell of net 19 is used as a tile. The net of the octahedron centres in
Nb,W,Oj, is derived as a combination of this tile and tiles of 4. In figure 43 two other possi-
bilities are shown: in figure 43 (a) the net is no. 20 (that in Mn,Hgj) seen as an intergrowth
of no. 19 tiles and small square tiles; and in 43 (5) a new net is derived (by slip from net 20).

Y o

NP
O H
=
= O
= O
= uw

FIGURE 42. A tiling of units of net 19 and 4* giving the cation net of Nb,W;Oy,.

It is of very great interest to distort the remaining squares in these last nets into rhombuses
(as in 44 — 3%.4.3.4). In figure 44 this is done first in a distortion of the basic tile (figure 44 (a))
and then to the net of figure 43 (4) (figure 44 (b)). The resulting net contains only pentagons
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FiurE 43 (a) AnD (b). Tilings involving units of net 19.

and triangles and is the primary net of the p-phase. The tiles of p-phase (u-tiles) can now be
combined with rhombuses to give a distortion of net 20 shown as figure 45 (compare figure 43).
This is the primary net of Wy(Fe,Si), (Kripyakevich & Yarmolyuk 1971, quoted by
Shoemaker & Shoemaker 1972). We shall further consider these and other related nets of
‘topologically close-packed’ structures below.

F1GURE 44. (a) Derivation of p-tiles from those of figure 43.
(b) The primary net of p-phase as a tiling.

Ficure 45, The primary net of Wg(Fe,Si), as a tiling.
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(ii) 4 =3

The nets in this class appear, at least at first sight, not to be simply related to each other or
to nets of other classes. The simplest one, shown in figure 46, is the only possible arrangement
of three atoms in a cell with square symmetry. Its symmetry is p4m, and it has nodes at 1()
and 2(c). Examples of the occurrence of this net are provided by (100) anion arrays in the
structures proposed for Ag,0, and Bi,O, and the (100) Pt array in Pt,O,. It is also the arrange-
ment of anions plus cations in (100) layers of ReQOys, and so composite nets (of both ions) in
structures derived from ReOj and discussed in the previous section, also belong to this class.
However, this is not a very useful or realistic way to consider the more ionic crystal structures,
as anions and cations play quite distinct roles in the structure and should be considered
separately. This is in contrast to alloy structures where we frequently consider nets composed
of two different chemical elements (but cf. §6).

INANZIN
""‘_" N
LINANZIN
NN N
LINAN

N NN/

FIcuURrE 46. A simple square net with 4 = 3.

There are other, possibly useful, ways to consider this class. It may be seen that a square
cell with 15 atoms also has 4 = 3 [15 = 3(22+12)]. Now an ‘almost’ (metrically) square cell
can be chosen for 38 with 15 atoms per cell: this is shown in figure 47. It is actually oblique with
a =b =,/13and y = 2arctan 3¥%2 = 92.20°. Also shown in the figure is a similar cell containing
60 atoms of 3% for which ¢ = b = /52, and a rectangular cell of 30 atoms for which a = 5,
b = 3,/3 = 5.196. It is possible therefore that some members of this square class may prove
to be more usefully considered with the hexagonal nets, although we have discovered no
simple connection with 38 for the square, 4 = 3 nets described in this paper.

A second, more fruitful, procedure is suggested by the net of figure 46. This may be
described as 4% with one-quarter of the atoms removed (‘vacancies’). The density of the net is

Ficure 47. ‘Almost’ square cells of 3%, with 15, 30 and 60 atoms.
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low (p = #%n = 0.5890). By way of contrast, the UgMn net (no. 12, which is also square, and
may be regarded as 3% with 259, ‘vacancies’) has a much higher density, p = 0.8418, the
same as 3%4.3.4. It is interesting to see that the simple square cell containing three atoms.
is simply related to the UgMn net as shown in figure 48. Again, the atom movements are
essentially rotations about four-fold symmetry axes.

Ficure 48. Transformation of the net of figure 46 to net 12 (UgMn).

This transformation may be used to relate structure types: in the proposed cubic Bi,O,
structure the cations are in cubic close-packing and the anions are on the net of figure 46,
alternate layers being displaced by 34, forming the lattice complex J*. In the cubic bixbyite
structure (C-type rare earth oxide structure) the same cation arrangement prevails, but the
(100) anion layers approximate the UgMn arrangement, with successive layers displaced by
0%, 30, 0%, 30. (The above stacking of the idealized nets will not have cubic symmetry, but the
relaxations to the real cubic structure are relatively small.) This arrangement results in all
{100} planes being the same. Figure 48 therefore shows a relation between the structures of
cubic Bi,O, and bixbyite.

A related anti-structure is found for CdjAs,. The (001) layers of Cd are very similar to the
anion layers in bixbyite but the stacking sequence is different. Specifically, the sequence of
translations between layers is 3, 04, 13, 30, 34, 04, 13, 0.

We might mention that the B net of ThB, (no. 26) and the primary net of W,Si; are closely
allied to the UgMn net, which is not unexpected as they have the same number of atoms per
unit cell (figure 49).

Net 18 (‘MacMahon’s net’) is also a member of this family. Figure 50 shows the nodes of
the net in figure 20, but with the vertices differently connected. The relationship to figure 46

Ficure 49. Relationship between the primary net of W;Si; (full lines) and that of UgMn (dotted lines).

40 Vol. 295. A
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is readily apparent. With metal atoms in’the centres of the squares, and anions at the corners,
this net is of common occurrence (somewhat puckered) in chalcogenide and pnictide structures
(Jeitschko 1974). The structure of pyrite, FeS,, provides a good example. This way of regarding
the net emphasizes that it is composed of two very different kinds of nodes and thus often
occurs with two very different kinds of atoms at 5% and 5%

Ficure 50. The nodes of net 18 differently connected (compare figure 46).

(6) Hexagonal system

(i) B=1

The prototype of this class is the triangular net 3% and we find, as in previous sections, that
many nets may be derived from the prototype by rotations of groups of atoms; in this instance
triangles or groups of triangles. 3% occurs most notably in structures derived from close packing
so that in many instances we will be able to relate structures with derived nets to those based
on close-packing.

The next net in this class is the kagome net 3.6.3.6. It may be rather obviously described as
38 with one-quarter of the atoms removed, but is much more elegantly and informatively

Ficure 51. (a)—(c) Transformation between 3® and 3.6.3.6.
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related to 3% by rotations of triangular groups of atoms as shown in figures 51(a) and ().
Figure 51(c) shows that, once again, the process may also be described as expansion and
contraction of the triangles (cf. transformation of 4% & 3%.4.3.4). :

In non-metal structures the kagome net occurs most notably as the {111} anion net in ReQOy;
the J complex already mentioned above. Here the stacking of successive planes is as in cubic
close packing, i.e. ...a’d’¢’.... It can be seen from figure 52 that such a sequence of kagome
nets can only be transformed (by using the operation of figure 51) to hexagonal close-packing
(layer sequence ...abab...) or to primitive hexagonal packing ...aaa... or ...bbb..., or to a
mixture of the two.
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F1cure 52. Transformations of kagome nets (small circles connected by heavy, dashed or dotted lines)
in cubic stacking to 3% nets in positions a (large open circles) or 4 (large filled circles).

In the transformation J - h.c.p. the octahedral groups of atoms in the J complex remain
unchanged. In ReOjg, these octahedral holes are occupied by cations and the derived h.c.p.
structure is PdF3. The correspondence between these two structures was pointed out by Jack &
Gutmann (1951). It is elegantly described as alternate rotation of corner-connected octahedra
by +30° about a trigonal axis, figure 53. The same, ‘jack’ operation (J — h.c.p.), but with
rotation axes passing through the centres of empty octahedra, converts AuCug to PdF;. (A
small shuffle, § (111),yy¢, is also necessary for Au — Pd since Pd is midway between the c.p.
F planes while Au is in the centre of a Gug hexagon, i.e. in a Gu plane.)

F1cure 53. Transformation from the octahedral framework of ReO; (left) to that of PdF, (right).
Arrows represent the sense of octahedral rotations for the reverse transformation.

40-2
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There are several interesting corollaries:

(i) In the corundum structure type, two-thirds of the octahedral interstices in an h.c.p.
anion array are occupied by cations. If the reverse, ‘anti-jack’, operation is applied and the
rotation centres pass through the empty octahedra we get the (unlikely) structure proposed
for (Cr,W),0; (Wyckoff 1963); idealized to a = 90°, u(2¢) = §, u(3d) = § with cations in
9-coordination, one in each half of each cuboctahedron.

(ii) Topologically, the structure of LiNbOj is an ordered corundum type. By rotating one
set of filled octahedra we combine the PdF; — ReO3; and PdF; — AuCu; transformations:
one set of cations remains in the rotated octahedra, the other set occupies the cuboctahedra,
and LiNbO; — perovskite (Megaw 1957; O’Keeffe & Hyde 1977).

(iii) In wurtzite the cations occupy fetrahedral sites in an h.c.p. anion array. If the latter
transforms from 38 to 3.6.3.6 and the cations move $5{111) + ${110) = ,(311) (cubic indices),
they arrive at the centres of the square faces of a cuboctahedron, and wurtzite -~ NbO.
NbO may be similarly derived from WG and NiAs. It is normally described as ‘deficit NaCl’:
an f.c.c. NaCl cell with Nb missing from the corners and O from the body centre of the cube.
All atoms are in square planar coordination. This operation is more elegantly described as
‘anti-jacking’ both arrays: anions and cations. In each case h.c.p. - J: in foto, two inter-
penetrating h.c.p. arrays — two interpenetrating J complexes.

Ficure 54. Change in stacking position of 3% accomplished by rotation of triangles.

If the rotation angle is doubled, i.e. the octahedra are rotated 60° instead of 30°, then
38 — 38 (obviously via 3.6.3.6), figure 54. This is clearly jack = anti-jack except for a change
of position: if the rotation axis is in the a position of a & net the product is in the ¢ position
and vice versa (cf. figure 52). If the rotation angle is halved (15° rotation or ‘half-jack’) the
result is shown in figure 55. In this very common net the angles of the hexagons are alternately
90° and 150°. The anion nets in a group of transition metal trifluorides are one of 39, 3.6.3.6
or (for example, VF;) this intermediate net (Hepworth et al. 1957; Michel et al. 1971). The
same net appears in the structures of many other compounds, for example AlgFeMg,Si,,
Fe,P, FeSi, Y(OH); (very slightly deformed) and LnCl; (Ln = lighter lanthanides), &'-
Sb;Cu,,, etc.

Ficure 55. The ‘half-jack’ operation on 38.
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The same operation on a ‘substituted h.c.p.” array — AB;, with A substituting for one third
of the B atoms in alternate c.p. layers — but with rotation axes coinciding with the three-fold
axes of the tetrahedra (parallel to c) so that the atoms of only half the layers are affected,
transforms the twinned cuboctahedra to hexacapped hexagonal prisms. These are occupied
by Ca in CaZn; (= CaCuy), the other atoms being at the transformed h.c.p. sites (cf. below,

§ 85).

This still does not exhaust the known possibilities. By rotating pairs of edge-shared triangles
by 30°, 38 > B-W (no. 14, figure 16), see figure 56. Finally, the strange, major anion layer in
CrO, is also readily produced (slightly idealized) from 3% by rotating corner-shared triangles,
figure 57.

Other nets can be derived from 38 by rotations of triangular groups of atoms, but these are
of less importance than the anti-jack operation we have described. Figure 58 shows how net

Ficure 57. Transformation of h.c.p. to the anion array of CrOj;. The nodes of the two 3% nets are indicated by
small circles, open at one level (a), filled at the other (5). (Only the a net is drawn.) The nodes of the trans-
formed nets are indicated by large circles. In the transformation, triangles (actually tetrahedra) are rotated
about axes normal to the plane of the diagram and passing through rotation centres indicated by double
circles.

FIcure 58. Transformation from 3° to net 23.
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590 M. OKEEFFE AND B. G.HYDE

23 is derived by rotation from 3%. The triangles to be rotated clockwise are the same as in
figure 51 but the rotations are no longer all the same size. Figure 59 gives another example in
which net 27 is derived from 38. Note that not all atoms are now involved in the rotation oper-
ation and that a considerable decrease in density results. (Note also that it is the net of figure 55,
with half the triangles centred by an additional atom.)

Ficure 59. Transformation from 3° to net 27.

Other nets could be derived from 3% by varying the periodicity of spacing of rotation points
(as was done with 4%) but, in contrast to the earlier experience, this does not appear to be a
fruitful line to pursue. ‘

Of the other nets in this class, 4.6.12 (no. 11) seems to be of little importance in crystal
chemistry, owing to the presence of the large polygon. The other two [nos 16 (a) and ()] are
very simply related to each other by rotation of hexagonal groups of atoms as shown in figure
60. They are less readily related to 38 although, of course, they are compatible with it.

Ficure 60. Transformation between nets 164 and 165.

We have remarked that the 3.6.3.6 net can be derived from 38 by systematic removal of
one-quarter of the atoms, and that in this sense the 3.6.3.6 — 38 transformation is elimination
of ‘vacancies’ (the same is true of p-W — 38, figure 56). It is natural to enquire whether a net
derived from 38 by removal of a smaller fraction of atoms can be converted to 3 in a similar
manner. In general, it will be possible if the ‘vacancy’ net is in the B = 1 class. To illustrate
this point, consider a net derived by removal of #; of the atoms from 3%. Since 13 = 3%+
(3 x 1) + 12, one can construct a supercell of 3% with 13 atoms per cell. If the atom at the origin
of the cell is removed one has a hexagonal net with 12 atoms per cell, which is also in the
B =1 class (p = 2, ¢ = 2). This latter net is shown in figure 61(a) in which groups of 12
atoms defining a hexagon and six triangles are picked out. Collapse of the hexagon in this
group (a jack operation) to four triangles, as shown in figure 62, will result in a region of 3°.
The collapsed groups, suitably oriented as in figure 61(b), fit together to form a 3% net with
the same number of atoms per cell as the original net.
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PLANE NETS IN CRYSTAL CHEMISTRY 591

FiGure 61. Transformation from (a) a net corresponding to 3% with %
of the atoms missing to (4) 3%

g

5

Ficure 62. Relationship between the two groups of six triangles in figure 61.

LA

The reasoning can be extended to higher numbers but the transformations will be less
elegant. One could, for example, (to choose numbers arbitrarily) make a 3% net with 1/400
‘vacancies’ by taking an atom from the origin of a 20 x 20 supercell of 38, The resulting net,
containing 399 atoms, is still in the B = 1 class (p = 17, ¢ = 5 or p = 13, ¢ = 10) and, in
principle, can be transformed to 3% without any change in shape.

Thus, it may well be possible for vacant atom sites to be ‘dissolved’ or dispersed in a 38
net in a crystal structure: a possibility that seems not to have been considered. By the reverse
operation ‘vacancies’ may be generated, also without the need for long-range diffusion.

Ficure 63. Transformation between 6%, 3.4.6.4 and 3%.6.
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592 M. OKEEFFE AND B. G. HYDE

(i) B=2

The prototype of this class is 63: three other semi-regular nets belong with it and they are
all elegantly related. Figure 63 shows how 62, 346 and 3.4.6.4 are related by rotations of hexa-
gons. Starting with 63, we have picked out one-third of the hexagons. Rotation of each of these
by +arctan %2 = +19.11° produces 3%6; rotation by another 10.89° will produce 3.4.6.4.
Thus, as the hexagons rotate, the sequence 6%, 3%6, 3.4.6.4, 3.6 is repeated six times per
revolution. (Note that the enantiomorphous forms of 3%6 alternate, so that this is also a
mechanism for ‘inverting’ this net.)

The relation between the structures of TISbFg and KOsFj is just that between 3.4.6.4 and
3%6. In a manner analogous to the LiNbO,/perovskite correspondence it is revealing also
to consider this structural relation as a rotation of octahedral [MFg] groups, as shown in
figure 64. (In this case the rotated octahedra are not connected.) Note that in these structures
the stacking of the three anion layers is again ...a’d%¢’... as for the kagome layers in
perovskite; and that the large cations (Tl+ or K+) have the same environment in all three
structures, a cuboctahedron of anions.

Ficure 64. Transformations between the structures of TISbFg (anion nets 3.4.6.4)
and KOsFg (anion nets 34.6).

To derive the last member of this class we again rotate the same group of hexagons and
allow them to expand so that distances between atoms on one hexagon are larger than those
on adjacent hexagons. This is shown in figure 65.

FiGure 65. Transformation from 6° (heavy lines) to 3.12% (lighter lines).

It is interesting to apply the jack operation (in which a hexagon is converted to a group of
four triangles) to 63. The result is shown in figure 66. One obtains a net with one group of
four triangles and two deformed hexagons in the unit cell. The deformed hexagons are exactly
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PLANE NETS IN CRYSTAL CHEMISTRY 593

intermediate between regular hexagons and the group of four triangles, in the sense of having
angles of 90° and 150° instead of all 120° for regular hexagons and 60° and 180° for the group
of four triangles, i.e. they are identical to those produced in the half-jack operation on 3%
(figure 55). However, the area of the deformed hexagon is closer to that of a regular hexagon
than to that of the group of four triangles, so that the density of this net is less than that of
346 (which is made up of eight triangles and one hexagon) and is, in fact, equal to that of
3.4.6.4. The net in figure 66 occurs, with only very slightly different angles, as the primary
(001) nets in Mn,Si, (D8,) and, almost exactly, as the (0001) projection of the millerite (NiS)
structure.

FiGure 66. Deformation of 6% net (lighter lines) to a new net (heavier lines) described in the text.

It is worth noting too that 3%6 is not the densest net in the B = 2 family. In figure 67 (a)
we show another net that can be considered as derived from 3% with one-ninth of the sites vacant.
As shown in figure 67(4), this is readily derived from 63 (= 38 with one-third of the sites
vacant!) by 30° rotations of hexagons (followed by a uniform contraction).

FiGURE 67. Derivation of 6 from a net derived from 3® by removing 3 of the nodes.

There is an infinite number of such nets, derived from 38 with vacancies, compatible with
63. Thus, for example, a hexagonal cell with 999 atoms of 3% can be found (B = 1, p = 30,
¢ = 3). Removing one atom (such as that at the origin) leaves a cell with 998 atoms, which
is in the B = 2 class (p = 18, ¢ = 7). (Doubtless larger numbers could be found. We need
a number N such that N = pf+p,¢;+4] and (N—1) = 2(p3+poq.+¢5) where py, 1, p2, 42
are integers. Presumably, there is no limit to the value of N.) The 998 atoms per cell net will
be very largely regions of 38, and it might seem at first sight that it is being claimed that a net
that is essentially 3% is being transformed to 6% without change of shape while, at the same time,
the transformation 3% < 6% is excluded, since these nets are in different classes. However,
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within this large cell we will be transforming 38 to 63, presumably by a mechanism such as
discussed later (p. 598), involving subcells that do change shape. The shape-change must be
in different directions in different regions (i.e. multiple twinning on the subcell level) so that
there is no overall change in shape in the supercell.
(iii) B=5

We have described just two nets belonging to this class and they are simply related to each
other. They are incompatible with the other hexagonal nets previously described, and thus
cannot be transformed into them without adding or subtracting atoms. This observation
suggests one means of deriving them originally proposed by Holmberg (1970) and by Loopstra
(1970). In figure 68 we show how net 22 is derived from 6% by omission of one-sixth of the
atoms. The structure of a-U,;O4 is composed of primary layers of oxygen atoms on this net
(5 atoms per cell) with uranium atoms centring the pentagons (3 U per cell). The remaining
three oxygen atoms in the cell are on a secondary net with O above U. Adding one oxygen
atom per cell (which converts this net to 63), one has approximately the structure of a-UQO,
(in which the 63 nets are appreciably puckered). The a-U;Oy structure thus provides another
nice example of how a crystal structure may relax to eliminate ‘ordered vacancies’.

Ficure 68. Derivation of net 22 (heavy lines) from 6® (light lines) by
removal of one-sixth of the nodes (filled circles).

Figure 69 shows how net 22 is related to net 24* (the metrically hexagonal version of the
primary anion net in B-U3;Og). The operation is rotation of pentagonal groups of atoms,
corresponding in the crystal structure to rotation of pentagonal bipyramidal [UO,] groups
about a fivefold axis.

F1Gurke 69. Relation between (g) net 22 (x-U,O;) and (b) net 24* (B-UaOs).
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8. TRANSLATION, OR SLIP OPERATIONS
(a) 3%« 4% (and intergrowths)

This is the prototype slip operation and was dealt with in a preliminary paper (Hyde et al.
1972). It allows transformation between the hexagonal class of nets and the square class. At
its simplest, it involves a homogeneous deformation [figure 70 (a) - (4)]. The shear angle is
30°. If it is doubled, 38 is reproduced [figure 70(¢)]. Carrying out the double operation on
alternate rows only also reproduces 3%, but with a different change of shape (figure 71). Clearly,
figure 71 () to figure 70 (b)) changes 38 to 4* without changing the direction of the (macroscopic)
crystal faces. If the single operation is carried out only on alternate rows of triangles, then
3% > 33,42 (figure 72). (Analogously, 4* can also be converted to 33.4%). Clearly, by varying
the spacing and width of the deformed bands, any intergrowth of 4% and/or 3% with 33.42
may be produced.

Ficure 70. Transformation, by shear, from 3% to 4* to 3°.

(a) (b) (a) (8)
AVAVAVAVAN VavavavAvARVAvAvAVANRR
\VAVAVAVAN \VAVAVAVANEER VAVAVAVANEER VAVAVAVAN
\VAVAVAVANER VAVAVAVAN AVAVAVAVANERVAVAVAVAN

Figure 71. Change in shape of a 3% net (see text). Ficure 72. Transformation from 3° to 3%.4%.

By appropriately stacking the various nets, and interleaving secondary nets, these operations
lead more or less directly to relations between structure types. Starting with ... aa...stacking
of primary nets with ...8f... secondary nets (also 3%) figure 70(a) - () converts WC to
CsCl. If the secondary nets are ...fyBy... then anti-NiAs — CsCl. If the primary nets in
figure 70 (a) are close-packed, and stacked ...abcabe... as in c.c.p., and the secondary nets are
...yafya..., then a primary stacking of ...aaa... in figure 70 (b) necessitates an additional
slip of the primary layers. This is the well-known deformation of the primitive rhombohedral
units cell of NaCl to the primitive cubic cell of CsCl. If the product primary net is ...abab...
then, as well as slip, the secondary layers of cations drop into the primary layers to give NaCl
in a different orientation.

Starting with ...abab... stacking, and filling alternate rows of octahedral interstices, gives
the rutile structure idealized to h.c.p. anions. Figures 70 (a) - (4) - (¢) then correspond to
rutile > CaF, - rutile twin, if the stacking in (4) is ...qaa..., and that in (¢) is also
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...abab.... Figure 72(a) - (b) corresponds very approximately to rutile - monoclinic zir-
conia; and figure 71(a) - (b) to rutile > a-PbO, (with ...abab... stacking). Similarly, the
transformation figure 70 (b)-figure 72 () corresponds to high-TII (= CsCl) —low-TII ( = anti-
CrB).

These and similar transformations, and their relevance to, for example, phase transfor-
mations under high pressure, have been discussed in more detail elsewhere (Hyde ef al. 1972;
Hyde & O’Keeffe 19735).

(b) 4%+ 6°
This is less elegant, not being a homogeneous transformation. A simple mechanism is

shown in figure 73. The square cell (¢ = 2) in (a) becomes the rectangular, ‘orthohexagonal’
cell (a = /3,5 = 3) in ().

FiGure 73. Transformation from (é) 4% to (b) 6% and (¢) CugN to (d) LigN.

If the nets are stacked in superposition (i.e. ...aaa..., normal to the net planes) then figure
73 (a) - (b) could represent a primitive cubic array transforming to a primitive hexagonal
array. If the open circles are alternately M and X atoms this is NaCl - BN (‘graphite’
form). On the other hand, if the nets in figure 73 () are puckered, the same diagrams illustrate
a-Po (primitive cubic) — lonsdaleite (= hexagonal diamond) or, with nets of alternate M
and X atoms, NaCl - wurtzite (hexagonal ZnS, or zincite).

Similarly, figures 73 (c) and (d) represent CugN (anti-ReQOjg) — LizN. The filled circles
represent —-N-M-N-M- rows normal to the plane of the diagram, and the arrows indicate
‘shuffles’ accompanying the transformation, taking the rows from the centres of squares in
(¢) to the centres of hexagons in (d); thus converting NCug octahedra to NLig hexagonal
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bipyramids. The same diagram describes a transformation of -UO; (ReQOj3) to a-UQj, though
now the hexagons in figure 73 (d) are grossly puckered, so that the hexagonal bipyramid is
deformed to a cube compressed along the atom rows, which are now -M—-O-M-O- (the nets
being O atom arrays).

Fi1GUrE 74. (a), (b), (¢), (d) as (a), (b) but in a different orientation.
(e), (f) intergrowth of (b) and (d).

In o-IrV and BaZng, for example, the nets lie between the two extremes of figure 73 (a)
and (b), cf. figure 74(a) and (b); b/a = 1.167 and 1.277 respectively, instead of 1.000 and
1.732. In this case it is clear that there are two equivalent orientations for the unit cell of the
product net: figure 74(b) and (d). In any real case, strain would undoubtedly cause both
orientations to occur, i.e. the product would be twinned so that shape change is minimized.
Quite possibly twinning would be on the finest possible scale, see figure 74 (¢, f). The trans-
formation from the major Zn net in CaZn; (= GaCuy) to the corresponding Zn net in BaZn,
is analogous to the actual transformation in figures 74 (a) and (b), i.e. half that in figure 73 (a) -
(b). (There is also some shuffling of 209, of the Zn atoms.) The transformation CaZng— SrZny
is that between figures 74 (¢) and (f), i.e. SrZng is finely twinned BaZnj.
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(¢) 3863
These different members of the hexagonal system are in different classes. They may, of
course, be very simply related by a ‘vacancy/interstial’ mechanism: 63 is 38 with one-third
of its atoms removed. Centring the hexagons in 62 restores the 3% nets, but a change in topology
relates the two without adding or subtracting atoms, although, of course, it involves a change
in the size of the unit cell (figure 75). In this case, the @ axis of the unit cell remains unchanged,
while 4 increases by 509%,. It is readily apparent that 3%.4? is easily transformed to 63 (a hexa-

gon ~ 1 square+ 2 triangles). Hence the transformation 3% — 6% may also be achieved via
3%.42.

Ficure 75. Transformation from 3% to 6°.

These last are simple examples of the truism that any net may be converted to any other
net by severing some links, or making new ones, and allowing the system to relax so that un-
linked nodes become as far apart as possible.

(d) Other slip relations

There is a number of (fairly obvious) instances in which pairs of nets are related by slipping
adjacent ribbons of net with respect to each other (as in 3%« 33%.4%2 4%, For example, nets
7 and 14 (kagome net and B-W) are related in this way, by slipping the former by 4 on the
(20) line at intervals of a (cf. figures 8 and 16). Similarly, net 19 is converted to a new net
by slip of 4a along (01), as already mentioned (cf. figures 21 and 43 (5)).

Only slightly less obvious is the transformation of the HTB net (no. 8) to that of UVOj
(no. 25) by slip of 44 along (10), repeated at unit cell intervals (figure 76). Here half-hexagons
combine with half-squares so that alternate hexagon +square strips become the strings of
edge-share pentagons that are so characteristic of the structures considered in §10.

There is another type of slip generally termed crystallographic shear (CS), in which the slip
vector is no longer parallel to the slip line. Such transformations involve the elimination or

i x H i i H iy i / i
OSSO — WQ
P Vo HE , "\ ; /

Ficure 76. Production of net 25 from 3.4.6.4.
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addition of nodes/atoms, and appear at various places in this paper. They are specifically
identified at several points in the next two sections.

9. TETRAHEDRALLY CLOSE-PACKED (FRANK-KAsPER AND FRIAUF-LAVES)
STRUCTURES
(a) o-phase
In this structure the primary (001) nets are kagome tiling, hexagon-triangle, with 11 atoms
per tile (figure 77). Adjacent layers are rotated by $n with respect to each other (so that the
hexagons generate hexagonal antiprisms). The secondary layers are slightly puckered 3%.4.3.4
nets.

Ficure 78. Transformation from the kagome net (left) to kagome tiling (right)
by elimination of triangles (shaded).

The net in this tiling is closely related to the kagome net (3.6.3.6) ; each tile contains a seg-
ment of kagome net, and may be simply derived from it by collapse, eliminating one atom
per large tile (= 4 unit cells of 3.6.3.6) (figure 78). This operation converts the secondary
nets from 38 (for 3.6.3.6) to 3%.4.3.4 (for kagome tiling).
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(6) Wi(Fe,Si),
This structure (by Kripyakevich & Yarmolyuk 1971; quoted by Shoemaker & Shoemaker
1972) has (001) pentagon-triangle primary nets consisting of what we might call KY tiles

(figure 79). Two orientations alternate along ¢ so that all the pentagons produce pentagonal
antiprisms. The interleaved secondary nets are 3%.4.3.4.

Ficure 79. The primary net of Wg(Fe,Si), as a tiling (heavy lines) with the secondary net (dotted lines).

We note that the KY tile is more conveniently regarded as a p-tile (see p-phase below) plus
a pair of triangles, and that kagome tiling is readily converted to KY tiling by eliminating one
atom per tile at the short edges (figure 80).

Ficure 80. Comparison of KY tiling (on left) with kagome tiling (on right). The half-filled circles
of kagome tiling are replaced by the filled circles of KY tiling.

() wephase (WeFey)
Parallel to (111) of the rhombohedral unit cell, the primary nets are kagome, and the

secondary nets are 63 and 38 but, for our present purposes, it is better to concentrate on the
layers parallel to (110). The primary nets are then pentagon-triangle, adjacent nets being
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translated by 4[110] so as to form pentagonal antiprisms and ‘stellae quadrangulae’. They

are readily resolved into a tiling (figure 81), the tiles being minor distortions of the unit cell

of net 19 (ThgMn,,). They are also readily derived from KY tiling (= p-tiles + triangles) by

a simple slip/collapse (CS) that eliminates the triangles (figure 82). This converts the secondary

net from 32.4.3.4 in KY tiling to 3%.4? in the p-phase. ‘
We have already discussed the relation of the p-tiling with net 20, etc. (§7 (a) (i)).

Ficure 81. The p-phase primary net as a tiling Ficure 82. Transformation from the KY tiling (figure

(heavy lines) with the secondary net (dotted 79) to p-tiling (figure 81) by shear (eliminating the
lines). shaded triangles).
(d) M-phase

The primary nets parallel to (001) again consist of pentagons and triangles, but they are
more complex than in the previous two examples. They are, in fact, composed of strips of p-net
(infinite in the [10] direction), adjacent strips being twinned by glide reflexion across a line
parallel to [10] — the twin and composition line (figure 83). There is considerable overlap
between adjacent strips, i.e. many atoms near the composition line belong to both strips.

Ficure 83. The primary net (light, medium and heavy full lines) of M-phase. Heavy and medium lines
outline the edges of two sets of (twinned) p-tiles. Dotted lines outline the secondary net.

41 Vol. 295. A
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602 M. O’KEEFFE AND B. G. HYDE

The primary nets are, of course, stacked to give pentagonal antiprisms. The intervening
secondary nets are (as they must be for twinned p) twinned 3%.4% which is, in fact, also
twinned 3%.4.3.4. They are net 13 (figure 14).

The primary nets may also be described as an intergrowth of one set of p-tiles (in one of the
twin orientations) with a differently shaped (p’) tile (figure 84), or by a twinned arrangement
of these p’ tilings. It follows (a) that the p-phase structure may itself be described as the p’
tiling (figure 85) and (b) that the p’ tile may be produced from a p tile by a simple shear
operation parallel to [10] (figure 86). Clearly, therefore, the M-phase structure may be pro-
duced from that of the p-phase by mechanical twinning.

Figure 85. The p-phase primary net as a p’-tiling Ficure 86. Relation between the p-tile (left) and
(see text). One p-tile is lightly outlined. the p'-tile (right).

(¢) P-phase
The (001) primary layers, shown in figure 87 (a), are now hexagon—pentagon-triangle nets,
with alternate nets superposed and the stacking arrangement such that all the hexagons
form columns of hexagonal antiprisms and all the pentagons form columns of pentagonal
antiprisms. They may be described in several ways:

(i) As twinned o; the twin and composition lines being parallel to a. Within each twin
there are hexagon-triangle nets (o strips) which accommodate all the atoms; but the glide
reflexion twinning operation generates pentagons in the boundary lines, figure 87 (5).

(ii) As twinned p. Here the twin bands are pentagon-triangle nets, and the hexagons are
generated in the boundaries by the glide reflexion, figure 87 (c).
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PLANE NETS IN CRYSTAL CHEMISTRY 603

FiGURE 87. (a) The primary net of P-phase (heavy lines) and its secondary net (dotted lines). (4) The net in (a)
divided into strips of c-phase nets (shaded) related by glide-reflexion. (¢) The net in (&) divided into strips
of p-phase nets (shaded) also related by glide-reflexion.

(iii) As an intergrowth of ¢ and p strips.
The secondary nets (no. 18) are logically described as twinned 3%.4% (twinned p) = twinned
32.4.3.4 (twinned o) or as an intergrowth of 3%.4® and 3%.4.3.4 (figure 874).

(f) Zr,Aly

While this may be described, in terms of (0001) atom planes, as 3.6.3.6 primary nets of Al
at z/c = 0 with secondary 63 layers of Zr at z/¢c = } and (large) 38 nets of Zr at z/¢c = +14,
it is also a Frank-Kasper structure. Parallel to {1120} the primary nets are very symmetrical
pentagon—triangle (figure 88). They are stacked in two orientations to form pentagonal anti—
prisms. Intermediate secondary nets are 4%

41-2
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604 M. O’KEEFFE AND B.G. HYDE

The primary net is obviously closely related to those in W(Fe,Si), (cf. (4) above), the p-
phase ((¢) above), and net 19.

Ficure 88. (1120) primary nets of Zr,Al,,

(g) Friauf~Laves phases

These are incomplete close-packed structures, with 3.6.3.6 (kagome) primary nets normal
to the three-fold axis. However, they may also be regarded as examples of Frank & Kasper’s
‘topologically close-packed structures’, a description most obvious when one considers nets
parallel to the prism planes, {1120} in the hexagonal unit cell. All these structures then consist
of pentagon-triangle primary nets (figure 89). In principle there is an infinite number of
possibilities (polytypism in the stacking of the incomplete c.p. layers parallel to the basal
plane of the hexagonal cell), but only two types of tile are involved. Furthermore, these are
very easily interconverted by a ‘place-exchange’ mechanism (figure 90). (Clearly, as long as
only one tile is used in a given [1100] row, rows of either type may be stacked along [0001].)
The drawings (figure 89) show primary layers of (a) MgCu,, (b)) MgZn, and (¢) MgNi,, the
three simplest polytypes. Two points may be noted: (i) the distorted hexagon tile corners are

Seneue
jeeeue
e

Ficure 89, (1120) primary nets of (¢) MgCu, (b)) MgZn, (¢) MgNi,.
In each case open circles are Mg.
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PLANE NETS IN CRYSTAL CHEMISTRY 605

all nodes of the type 3.5% and are always occupied by the (larger) Mg atom (CN = 16), the
3.5.3.5 nodes accommodating the smaller atom, Cu, Zn, Ni, etc.; (ii) In all cases the secondary
nets (also of the smaller atoms) are 3.

Ficure 90. Top: relation between the tiles of MgCu, (left) and MgZn, (right).
Bottom: a symmetrical, intermediate tile found in Zr,Al,, etc.

Very striking also is the fact that these same Friauf-Laves tiles (sometimes very slightly
distorted, but still quite clearly recognizable) also occur in, and indeed dominate, all of the
structures that we have already considered which contain pentagon—triangle nets (i.e. except o)
and will be encountered again in nets associated with the structures of oxides related to p-U;Os.

Figure 91 (a) shows the Zr,Al; net in terms of Friauf-Laves tiles of the symmetrical form
shown in figure 90. (In this tile the peripheral atoms are Zr and the central atom Al). In
figure 91 () the p-phase net is resolved into similar tiles and, in figure 91 (¢), the net of Wy
(Fe,Si), is similarly described. Figures 91 (¢) and () are obviously related by a simple slip/CS
process between alternate horizontal rows of tiles. Slip between the remaining rows can produce
figures 89 (a), () or (c) — the nets of the three simpler Friauf-Laves phases. Slip in a vertical
direction relates figures 91 (¢) and (). In the M-phase structure (figure 91 (d)), not surprisingly,
bands of similar tiles occur, with whole tiles bonded to half tiles at the sides of the bands; while
in the P-phase, only fragments of tiles occur (figure 91 (¢)). In both these cases, however, the
whole structures are composed of these fragments. Again, it is not too difficult to see that figures
91(b) and (d) are related by slip in a vertical direction. (This slip operation is analogous to the
shear operation already described).

() Conclusion
The above discussion shows that the primary nets in all the topologically close-packed

structures (table 3) need not be treated as isolated types. There are, in fact, very close relation-
ships between them all, not unlike those between families of CS structures and ‘column’

TaABLE 3. CLASSIFICATION OF TOPOLOGICALLY CLOSE-PACKED STRUCTURES BY
THEIR PRIMARY AND SECONDARY NETST

primary net
A

secondary net hexagon-triangle  pentagon-triangle hexagon-pentagon-triangle
4 B-W Zr,Al,
3° v MgCu,, MgZn,, etc.

o = 3%.4.34 c We(Fe,Si),

g = 3°.4° m
off M P

t Cf. Shoemaker & Shoemaker (1972).
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n

Ficure 91. (¢) Zr,Al; primary nets resolved into tiles. (b) A similar resolution of the p-phase primary nets.
(¢) A similar resolution of the Wg(Fe,Si), primary net. (d) The primary net of M-phase. (¢) The primary
net of P-phase.
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PLANE NETS IN CRYSTAL CHEMISTRY 607

structures in the transition metal oxides. The clue to the nature of the relationship between
each pair is often made most readily apparent by comparing the related secondary nets. The
relations between these, 4% <> 3% and 4% 3%.4.3.4 etc., are quite simple translation or rotation
operations that have been dealt with in earlier sections. These relationships extend to the
crystal structures.

10. NETs DERIVED FROM THE B-UzOg NET

In this section we discuss a number of pentagon-square-triangle nets derived from that of
B-UgOg (no. 24, figure 26). These fall into a group rather as do the pentagon-hexagon—
triangle nets characteristic of topologically close-packed structures and, as for those nets, it is
more fruitful to concentrate on their topological rather than their metric aspects. A good
account of many of the nets described here has been given earlier by Jahnberg (1971). We will
find that the various operations (CS, twinning and rotation) previously discussed all come
into play.

Many of these nets are four-connected, and we have already remarked that for such nets
equation (1) shows that the fraction of triangles, f, is equal to the fraction of pentagons, f;.
In metal oxide structures, in which they largely occur, the metal atoms centre the squares and
pentagons; and oxygen atoms in a secondary net are over the metal atoms so that the metal
coordination is either octahedral or pentagonal bipyramidal. Per polygon the number of
metal atoms is f; +/5, and this is also the number of oxygen atoms in the secondary net. The
composition of the primary net is } f3+f; +2f5. Using the condition f; = f;, one readily finds
that the composition is MO, with x = (2—f;)/(1—f;). In ﬁrinciple, % can range from 2
(fs = 0) to 3 (f3 = }); here we consider only nets in which f; ranges from § to 2

OO0
oD
a<aa
leSele
SO D
 DDD

Ficure 92. The primary oxygen net of U;M0Oyg.

In going from the net of B-UgOg to that of a-UgOg one-half of the pentagons of the g-UzOg
net are rotated in the same sense by 18° (figure 69). If instead, rows of pentagons are rotated
in opposite senses new nets are obtained. In figure 92 we derive the net of UsMoOyg (Serezhkin
et al. 1973) from that of p-UgOg by rotations of the same group of pentagons but with the
sense of rotation changed every second row. The resulting net contains strips of the a-UgOyg
net in two different orientations separated by composition/twin lines indicated by the arrows.
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Cleé.rly this new net is one of a family of nets (differing in the widths of a-UzOyg strips) that
might be expected to occur in the UyMoOg-U;O4 system.

Ficure 93. Reflexion twinning of p-U;Os.

The UsMo00Og nets might (in two senses) be called rotation-twinned o-UzOg. There are
other nets to be derived from that of p-UgOg by reflexion twinning. In figure 93 we show a
possible mode of twinning the B-UyOg net. In this the fraction of triarigles is decreased so that,
if we are dealing with a metal oxide in which metal atoms centre the squares and pentagons,
the O/M ratio also decreases. Indeed, the closest possible periodic twinning of this type pro-
duces the anion net of UVOj, shown in figure 94. There is a series of nets derived from that of
B-U;zOg which differ only in the spacing of the twin planes. Another such net is shown in figure
95. It corresponds to the primary anion net of a hypothetical oxide M;O,5; (M3O5+ M,0;),
and could be described as an intergrowth of B-UgOg and UVOy. It has been proposed that
structures of phases in the Ta,0;~WO; system are derived along these lines (Stephenson &
Roth 1971).

Ficure 94. UVOj primary oxygen net as a periodic ~ FIGURE 95. Periodic twinning of the B-UgOg net (see
twinning of the B-U;Og net (cf. figure 93). text).

There is a second, quite distinct, relation between the UVOy and B-U;O; structures. In
figure 96 we show how an element of the p-UzOg structure is introduced into that of UVOy
by crystallographic shear (CS). The operation eliminates one node of the net (@) and one
square (occupied by M in an oxide) which, together with an O atom above the square in the
secondary net, constitute the elements of MO,. The limiting composition is 2M,0,-MO, =
M;04: thus the p-UzOyg structure is the end member of a homologous series of structures
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PLANE NETS IN CRYSTAL CHEMISTRY 609

derived from that of UVOj by CS. The general formula is My, ,50,4,.s, where n is an integer.
The n = 1 member of this family is shown in figure 97. Although an oxide with this structure
(e.g. U;V,044) has not yet been discovered, the same primary net is found in alloy structures
such as those of FeAl; and Fe,Al,,.

Ficure 96. CS of UVOj (see text).

g0 e
ey

CAANANAAY

F1cure 97. A net formed by periodic CS of UVOj.

Jahnberg (1971) has called attention to a second kind of twinning that is possible with the
B-UzOg structure: it is illustrated in figure 98. The relative orientation of the twins is the
same as’in the first kind, and the twin/composition planes are parallel (compare figures 93
and 98); but groups of three pentagons united by edge-sharing are now introduced. Figure
99 shows a new net derived from B-UzOg by multiple twinning of this second kind. It is
analogous to that of UVOj, produced by twinning of the first kind, but the composition is
M,O,,. The fraction of triangles in the new net is £, close to the maximum value of . Remark-
ably, this latter structure can be intergrown with a-UzOg. A structure is known which is
based on this principle (though not so described): it is shown in figure 100; units of M,O,,
(the wider strips) are intergrown with units of MO, (the narrower strips, with a-UzOg
structure). The composition is M;0,4 in accord with that of the actual compound, Zr,O,F,,
(Holmberg 1970).

Other possibilities for intergrowth should be apparent. We have already described how the
UVOj; net may be derived by slip from 3.4.6.4 so that, obviously, these two nets can intergrow
having a square-triangle strip in common. This same strip occurs in 3%.4.3.4, so that this net
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R
IR
S5 08 08

Ficure 98. A second type of reflexion twinning of Ficure 99. Periodic twinning of the second kind on
the B-U;Oq net (compare figure 93). the B-U3Oq net (compare figure 95).

: : 1 .'
S
095 0.08¢0:

SRR

Ficure 100. The primary anion net of Zr,O,F,.

can also intergrow with the other two as shown in figure 101. In this connection we might cite
¥-U3sMo0y,Og, (Serezhkin ef al. 1974) as an example of a compound with a primary net that
is an ordered intergrowth of 3.4.6.4 and 3%.4.3.4. (Similar intergrowths involving HTB have
also been observed by Hussain & Kihlborg 1976).

Note that the UVOy and B-UzOyg nets can intergrow in two different orientations illustrated

LA IA

Ficure 101. 3.4.6.4 (top) intergrown with 3%4.3.4 (centre) and the UVOj net (bottom).
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PLANE NETS IN CRYSTAL CHEMISTRY 611

in figure 102 (corresponding to the two derivations of UV Oy from p-UzOg by CS and twinning
respectively).

Finally, it may be pointed out that many of the primary nets occurring in topologically
close-packed structures, notably those of MgCu, and MgZn,, already discussed, might be

F1cure 102 (a) AND (b). UVOy and B-UgOy intergrown in two different orientations.

expected to be found in oxides also. For example, the MgCu, net (figure 89 (a)) contains only
3.5% and 3.5.3.5 vertices and has a 38 secondary net. Applied to oxides of the type currently
under discussion it would be the primary net of an oxide MOj,. Net 24, p-UzOg contains
Friauf-Laves tiles (two pentagons and two triangles) combined with squares (figure 26).
The squares of the B-UzOg net lie on {11) directions and can be eliminated by CS with a dis-
placement vector of approximately 4a in this plane (figure 103). Clearly, a series of hypo-
thetical oxide structures with compositions ranging from M;O4 to MO, can be derived by
periodic CS of p-UzOg.

Ficure 103. Elimination of squares from the B-UgOg net by CS.

It is of interest that the nets of this section are also elegantly related to 4% (f; = 0, hypo-
thetical oxide MO,) by periodic twinning. Figure 104 (z) shows 4% twinned about (21); about
the composition line one now has pentagons and triangles rather than squares. Applied to
oxides (in which MO groups centre squares and pentagons) this results in a decrease in the
M/O ratio and is an example of ‘chemical twinning’ (Andersson & Hyde 1972; Hyde ef al.
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1974). Periodic twinning produces different nets according to the spacing between twin lines;
thus figure 104 () shows the net of UVOy as a periodic twin of 4%, and figure 104 (¢) similarly
shows the derivation of the p-UzOg net. The closest possible such twinning (figure 104 (d))
produces a net topologically equivalent to that of MgCu, (corresponding to the hypothetical
oxide MO; already mentioned). Another example is provided by the structure of BaNb,Oq
(Galasso et al. 1959), with which one form of CaTa,Oy is isostructural. The square net of
anions is twinned by reflexion on every fourth (21) row, and the nets stacked so as to super-
impose. Nb—-O-Nb-O rows fill the square tunnels, forming [NbOg] octahedra, and the Ba
atoms lie between the nets and in the pentagonal tunnels, so that the Ba coordination poly-
hedron is a pentagonal prism.

FiGURE 104. (a)~(d) (21) twinning of 4% (see text).

11, CoLLAPSE

The foregoing discussion has been restricted almost entirely to operations on nets confined
to the plane. However, the interest is largely in three-dimensional crystal structures, many of
which contain nets.in two layers in very close proximity.

An example is provided by the familiar cubic and hexagonal structures of diamond. Here
one has 3% nets of unit edge-length occurring a distance of w57 apart in pairs, the distance
between pairs (of nets) being 4/§. If these pairs are enclosed in parentheses the stacking is
...(ab) (bc) (¢ca)... in cubic diamond and ...(ab) (ba)... in hexagonal diamond. If alternate
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PLANE NETS IN CRYSTAL CHEMISTRY 613

nets are cations and anions we have of course the zinc blende and wurtzite structures
respecfively.

An alternative description of the double layers is that they are puckered honeycomb (63)
layers of skew hexagons with vertex angles of arccos (—%) = 109° 28’ (such as occur in the
‘chair’ form of cyclohexane). Clearly only a small distortion is required to make the pairs of
38 into. planar 62 layers, i.e. by collapsing the two layers into one. We represent this symboli-
cally by (ab) - C, etc., capital letters here being used for 62 nets and lower case for 3¢ nets.

Such an operation applied to the wurtzite structure will convert it to BN (figure 105),
with 68 nets stacked prismatically. Applied to cubic diamond, it will convert it to rhombo-
hedral graphite: 6% nets stacked in the sequence ...ABC... (figure 106). Both transformations
correspond to transforming the bonding orbitals from sp? to sp?+ p. Production of hexagonal
graphite (stacking sequence ...ABAB...) requires slip of adjacent layers in addition to
collapse.

Ficure 105. The relation between wurtzite (top) Ficure 106. The relation between zinc blende (or
and BN (bottom). cubic diameond, top) and rhombohedral graphite.

The body-centred cubic array can also be decomposed into (111) 3% nets stacked in the
sequence ...abc..., but now every inter-net spacing is the same, . Pairs of (111) nets in the
b.c.c. structure thus form the same puckered 62 nets as in diamond. The nets can be divided
in the sequence ...(ab) ¢ (ab)c.... Collapse of the (ab) pairs to 6® in the C orientation yields
the structure of the o phase (Silcock 1958): ...CcCc.... This is the B> @ transformation
often observed on quenching b.c.c. alloys. The AlB, structure type (alternating 3% of Al and
63 of B) is formally the same. '

The simple cubic and face-centred cubic arrays can be decomposed into (111) 3% nets in
a similar manner but with spacings of - and 4/} respectively. The anion arrangement in
a-UOQ; can be derived from simple cubic in a manner somewhat analogous to the B — o
transformation although the 62 nets are now very puckered. The structure of Li;N has planar
63 nets of Li alternating with 38 nets of Li. Here the interlayed spacing suggests that it might
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F1cure 107. Relationship between the anion arrangement of ReOj (left) and that of HTB (right).

be more appropriate to consider Li;N as derived from f.c.c. Li with N in octahedral holes on
every third (111) layer. These octahedra then collapse to hexagons.

There is a group of structures that may be derived by collapse of kagome (3.6.3.6) nets.
It may be recalled that the anions of ReOg may be described in terms of kagome nets with an
...a'b’¢'... stacking. The spacing between nets of unit bond length is as in cubic close packing,
namely /2. In figure 107 (a) we show in projection three kagome nets with ...a’b’¢"... stacking.
In figure 107 () two of the nets are collapsed to be coplanar and minor displacements made in
the plane to change rectangles into squares. The collapsed net is now 3.4.6.4, the primary
anion net of (ideal) hexagonal tungsten bronze (HTB). The third kagome net centres the
squares in just the position of the secondary anion net of HTB. Thus the transformation of the
anion net of ReQy to that of HTB involves the collapse of two-thirds of the kagome nets to
3.4.6.4, leaving the remaining kagome nets unchanged.

If the third, undeformed kagome net of X atoms (say ') is centred by A atoms, then figure
107 (@) — (b) corresponds to an ordered, A-deficient perovskite A;Bx, — HTB of the same
stoichiometry (with no A-deficiency). (At the same time the B atoms shuffle from the octa-
hedral sites in (a) to those in (b) — rather small, cooperative movements.)

In figure 108 we show the 3.4.6.4 net decomposed into two adjacent, deformed kagome nets.
The deformation is such as to enlarge the octahedral sites in the plane between them. On
collapse, these octahedra become the hexagons of 3.4.6.4. In the kagome — 3.4.6.4 deformation
alternate triangles in two of the three kagomes become larger and smaller, by *26.8%, in
edge length. The whole array (of three nets) is then expanded by 36.69%,.

To complete the structural correspondence of ReOj to the octahedral network of HTB the
octahedrally coordinated cation layers must collapse in a concerted manner. The cations in
ReOj are in a simple cubic array. If all three layers collapse as in figure 109 (a) - (b) and
simultaneously transform to kagome by the ‘jack’ operation as in figure 109 (b) — (c) the
array of octahedrally coordinated cations in HTB is obtained.

The collapse of the anion and cation nets must of course be considered to occur simul-
taneously: then the mechanism appears quite plausible.

The deformed kagome nets of figure 108 occur in another structure type, that of pyrochlore.

1 In reality the layers of corner-connected octahedra in HTB are puckered (by tilting the octahedra about
their two-fold axes in the plane of the drawing) so that, in fact, the true situation is between those in figure
107 (a) and (). The two combined kagomes are not quite coplanar, and their distortion is more equally distri-
buted over all three kagomes. Closely similar relations occur between the AX, structures (with empty octahedra)
of AuCu, and a number of other alloys, such as MngALSi (= MngAl,,), Fe;NiAly, (= Co,Al;, Pd,Mgs, RhyAl;
and Rh,Mg;), etc. (Andersson et al. to be published).
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Ficure 109. Production of a kagome net from three superimposed 38,

This structure is best considered as a network of corner-connected metal-oxygen octahedra
with composition BO;. Cavities in the structure can be filled by large cations as in Ag(SbOj,)
or cation +anion groupings as in La,O(TiO;), = La,Ti,O,. We consider here just the BO,
network. Parallel to (111), the anion array consists of unequally spaced deformed kagome nets
of the type just described. Pairs of such nets are almost coplanar (cf. footnote on HTB) so
that they may be considered as slightly puckered 3.4.6.4 nets. The cation arrangement is
alternately 3.6.3.6 and 38. Clearly the pyrochlore structure is related to ReOg in much the
same way as is HTB. Figure 110 shows the sequence of anion and cation planes in HTB
(along [0001]) and in pyrochlore (along [111]) and their relationships to ReOg. Clearly
the octahedral framework of the pyrochlore structure may be considered as an intergrowth
of the framework of ReO3 and HTB and one might expect intergrowth of any one of these
structures with another. Once again these relations are illuminating in the context of metal
alloy structures, e.g. the V + Al alloys: VAl,,, V,Aly;, V,Al,; etc. (Andersson, Hyde and Nyman,
to be published).
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HTB perovskite pyrochlore
(A%)BX3 (A)BX, (AY*) BX;

Ficure 110. The sequence of cation planes (light lines) and anion planes (heavy lines) in the BO; frameworks
of HTB, ReO; and pyrochlore. The three types of heavy lines (full, broken and dotted) represent the
(relative) positions a’, b and ¢’. The arrows indicate the movements of the cation layers from ReOj; or
perovskite, in the centre, to HTB, on the left, and to pyrochlore, on the right: groups of three coalescing
cation layers correspond to the transformation process in figure 109 (see text).

12. CONCLUSION

In this paper we have attempted to give a rather wide-ranging, but by no means complete,
analysis of planar nets and their application in crystal chemistry. Formal definitions were
followed by some mathematical results, but the emphasis is on nets observed in and useful in
understanding cfystal structures, whether or (more often) not they are regular enough to be
of formal mathematical interest. The major part of our thesis, and where we differ most from
earlier investigators in this field, is that net types may often be simply and conveniently re-
lated/transformed into one another by rather straightforward operations that may be termed
‘crystallographic’, for example translation and rotation. Elimination or addition of nodes
from or to a net may also produce another net — an operation corresponding to the production
of ‘point defects’ in crystals. It transpires that, frequently, this may equally be achieved by the
‘crystallographic’ operations — a mode which in the crystal case circumvents the need for
long-range diffusion in order to achieve a structure containing ‘point defects’. The former is
cooperative, the latter is not. This suggests the possibility of new models for ‘cooperative
diffusion processes’, which seem not to have been previously taken into account, at least in
the standard texts on diffusion in solids.

Throughout the paper, nets have been related to the structures of specific compounds. These
range through a wide variety, from metal alloys such as the Frank-Kasper and Friauf-Laves
phases, through intermediate cases such as metal borides, to inorganic materials such as
transition and actinide metal oxides, and to minerals such as silicates. The customary but
artificial and limiting division of structures into separate groups, of interest largely to only
metallurgists or only inorganic chemists or only mineralogists, is self-defeating, and to be
deprecated.

The approach is of course essentially geometrical: it leaves aside important questions such
as the binding between atoms in crystalline solids. Our justification is simply that it seems
logical to develop description as an essential preliminary to explanation. A coherent and unified
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approach to crystal chemistry and physics has not yet been achieved, although we would
argue that the sort of approach used here (relating structures by simple, geometrical-crystallo-
graphic operations) is enabling one to be developed. Elsewhere a number of people have been
using a similar approach in correlating structures described in terms of coordination poly-
hedra, i.e. in three dimensions. Different descriptive methods have different advantages; and
all that are found useful should be used and developed.

The last section departs somewhat from the others in explicitly introducing the third dimen-
sion to nets. This results in new insights. It also raises the whole question of three-dimensional
nets — a subject on which A. F. Wells has published a number of papers and, after this work was
completed, a monograph (Wells 1977), but in which progress has not been spectacularly useful.
It seems to us that this is an area of very great importance; and the need for its development
as an essential adjunct to topology in crystal science is extreme. But it is also very difficult.

We therefore end by saying that the present paper provides only an introduction to the
application of planar nets to crystal science. A fortiori it serves only to introduce the need for
a similar development in three-dimensional nets. We suggest that both areas are worthy of
considerable effort. If this is made, it is likely that it will then become even clearer that,
contrary to general, implicit assumption, crystal structures are not many thousands of almost
arbitrary atom arrays, but rational architectural constructs with their own logic, and based
on a few rather simple arrays plus a few rather simple relations/operations which are, never-
theless, able to yield an impressively large collection of structures — which appear to be of great
complexity only if the underlying principles (relations) are not recognized.

This work was carried out with the assistance of research grants from Z.W.O. (the Dutch
Organization for the Advancement of Pure Scientific Research) and N.A.T.O., to whom we
are grateful.

Addendum

Since this text was completed (in 1977) two papers concerning part of its subject matter
have appeared: Papiernik ef al. (1978) on structures related to p-UzOg (§10), and Andersson
(1978) on tetrahedrally close-packed alloy structures (§10), although these are described
therein as connected coordination polyhedra rather than as stacks of planar nets.
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